
👨💻程序员三明治:个人主页 🔥 个人专栏: 《设计模式精解》 《重学数据结构》
🤞先做到 再看见!
指令如下:
cd /home :先进入home目录下,然后再创建自己的文件夹 mkdir xxx :先创建一个自己名字缩写的总文件夹(我输入的指令是: mkdir wbs) cd xxx :进入自己名字创建的文件夹的目录下,然后进行项目跟环境文件夹的创建。() mkdir env :创建环境文件夹 mkdir project :创建项目文件夹
Anaconda 简介 Anaconda 是一个面向数据科学、机器学习和人工智能的开源 Python 发行版,广泛用于科学计算和大数据分析。它提供了一个完整的生态系统,集成了 Python/R 环境、包管理器和大量数据分析相关的工具和库。
核心功能
1、包管理:
使用 conda 管理包,可以轻松安装、更新和卸载软件包。
支持安装 Python 和非 Python 包(如 C/C++ 库)。
2、环境管理:
创建独立的虚拟环境,避免库版本冲突。
可以针对不同项目设置不同的 Python 版本和依赖。
3、科学计算支持:
自带多种常用库,如 NumPy、Pandas、Matplotlib、SciPy、Scikit-learn 等。
针对数据科学、机器学习和可视化任务,开箱即用。
4、跨平台:
支持 Windows、macOS 和 Linux 操作系统。
5、图形化界面:
提供 Anaconda Navigator,一个无需命令行的工具,用于管理环境、包和项目。
适用场景
1、数据科学:
用于数据处理、清洗、分析和建模。
2、机器学习:
提供模型训练和优化所需的工具。
3、科研计算:
提供高效的数值计算支持。
4、大数据分析:
与 Hadoop、Spark 等工具集成。lspci | grep -i nvidia我们实验室的gpu还是挺强的。。。

# 尝试官方Anaconda下载
wget https://repo.anaconda.com/archive/Anaconda3-2025.06-1-Linux-x86_64.shbash 你下载的Anaconda因为我下载的是Anaconda3-2025.06-1-Linux-x86_64.sh 所以我输入
bash Anaconda3-2025.06-1-Linux-x86_64.sh
然后继续yes

看到这证明anaconda安装好了
首先输入source ~/.bashrc,用来更新环境变量,前面就变成了(base)
source ~/.bashrc
接着输入conda create -n MOTIP python=3.12,因为我要复现这篇论文.
conda create -n MOTIP python=3.12接着输入 y ,确认。 这样就算好了,如图

这样我们就创建了名字叫做MOTIP的python3.12的环境。
通过conda activate your_name来使用自己创建的环境,我之前创建的环境名是MOTIP,那么我输入
conda activate MOTIP然后我的环境就从base变为了MOTIP

退出虚拟环境,执行
conda deactivate如果想查看目前有哪些环境可以输入
conda env list想删除环境,则可输入,name换成你想删的环境名。
conda env remove -n name下载完成后,测试pytorch是否下载成功。
输入命令,进入python环境
pythonimport torchtorch.cuda.is_available()
为True说明大功告成!
conda可以为不同的项目创建不同的环境。
命令:conda create --name env_name packages_name –name选项可简化为-n,指出要创建的环境名称,并可以在创建环境时安装包。 例如:conda create -n py3 pandas创建了名称为py3的环境,并安装pandas包。 创建环境的时候,可以指定python的版本: conda create -n py3 python=3 环境py3中会安装最新版本的python3。 conda create -n py3 python=3.6 指定使用3.6版本的python。
windows中使用activate env_name命令,OS/X和linux中使用source activate env_name命令激活环境。 例如:activate py3进入py3环境后可使用conda list命令查看py3 环境中已经安装的包。在新的环境中,可使用conda install package_name命令继续安装其他需要的包。
命令:deactivate (windows适用)或source deactivate(OS/X或Linux适用)。
如果你想向他人共享你自己创建的环境,以供其他项目用你项目的配置,主要是保持包的版本一致。就可以使用conda env export > enviroment.yml命令将源环境的包的配置数据保存到enviroment.yml文件中,其他项目就可以在目标环境中,执行命令conda env update -f path/to/enviroment.yml将目标环境更新为与源环境完全一样。
对于不使用conda的情况下,python的pip命令也是可以做到这一点的:
pip freeze > enviroment.txt #将环境配置导出到enviroment.txt文本文件中。 pip install -r /path/to/enviroment.txt #恢复环境 AI写代码
命令:conda env list列出所有的环境,当前激活的环境对应的目录前会显示一个*号。
命令:conda env remove -n env_name
如果我的内容对你有帮助,请辛苦动动您的手指为我点赞,评论,收藏。感谢大家!!
我的博客即将同步至腾讯云开发者社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=h70g0sv71wz