如何可靠地检测条形码的四个角?

内容来源于 Stack Overflow,并遵循CC BY-SA 3.0许可协议进行翻译与使用

  • 回答 (1)
  • 关注 (0)
  • 查看 (42)

带有Python+的条形码zbar模块:

这样做是可行的:

import cv2, numpy
import zbar
from PIL import Image 
import matplotlib.pyplot as plt

scanner = zbar.ImageScanner()
pil = Image.open("000.jpg").convert('L')
width, height = pil.size    
plt.imshow(pil); plt.show()
image = zbar.Image(width, height, 'Y800', pil.tobytes())
result = scanner.scan(image)

for symbol in image:
    print symbol.data, symbol.type, symbol.quality, symbol.location, symbol.count, symbol.orientation

但只检测到一点:(596, 210)

如果我用黑白阈值:

pil = Image.open("000.jpg").convert('L')
pil = pil .point(lambda x: 0 if x<100 else 255, '1').convert('L')    

更好,我们有3分:(596,210),(482,211),(596,212)。但这又增加了一个困难(为每一幅新图像自动找到最佳阈值(此处为100)。

不过,我们还没有条形码的四个角落。

问:如何使用Python可靠地在图像上找到条形码的4个角?

提问于
用户回答回答于

解决方案2非常好。使它在你的形象上失败的关键因素是阈值。如果您删除参数225远至55,你会得到更好的结果。

我重新编写了代码,在这里和那里做了一些调整。

import numpy as np
import cv2

image = cv2.imread("barcode.jpg")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# equalize lighting
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
gray = clahe.apply(gray)

# edge enhancement
edge_enh = cv2.Laplacian(gray, ddepth = cv2.CV_8U, 
                         ksize = 3, scale = 1, delta = 0)
cv2.imshow("Edges", edge_enh)
cv2.waitKey(0)
retval = cv2.imwrite("edge_enh.jpg", edge_enh)

# bilateral blur, which keeps edges
blurred = cv2.bilateralFilter(edge_enh, 13, 50, 50)

# use simple thresholding. adaptive thresholding might be more robust
(_, thresh) = cv2.threshold(blurred, 55, 255, cv2.THRESH_BINARY)
cv2.imshow("Thresholded", thresh)
cv2.waitKey(0)
retval = cv2.imwrite("thresh.jpg", thresh)

# do some morphology to isolate just the barcode blob
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 9))
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
closed = cv2.erode(closed, None, iterations = 4)
closed = cv2.dilate(closed, None, iterations = 4)
cv2.imshow("After morphology", closed)
cv2.waitKey(0)
retval = cv2.imwrite("closed.jpg", closed)

# find contours left in the image
(_, cnts, _) = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
c = sorted(cnts, key = cv2.contourArea, reverse = True)[0]
rect = cv2.minAreaRect(c)
box = np.int0(cv2.boxPoints(rect))
cv2.drawContours(image, [box], -1, (0, 255, 0), 3)
print(box)
cv2.imshow("found barcode", image)
cv2.waitKey(0)
retval = cv2.imwrite("found.jpg", image)

edge.jpg

阈值.jpg

Closed.jpg

Found.jpg

控制台输出:

[[596 249]
 [470 213]
 [482 172]
 [608 209]]

扫码关注云+社区

领取腾讯云代金券