python / pandas:如何将两个数据框合并为一个具有分层列索引的数据框?

内容来源于 Stack Overflow,并遵循CC BY-SA 3.0许可协议进行翻译与使用

  • 回答 (1)
  • 关注 (0)
  • 查看 (65)

我有两个数据框,看起来像这样:

>>> df1
              A    B
2000-01-01  1.4  1.4
2000-01-02  1.7 -1.9
2000-01-03 -0.2 -0.8

>>> df2
              A    B
2000-01-01  0.6 -0.3
2000-01-02 -0.4  0.6
2000-01-03  1.1 -1.0

如何使用下面的层级列索引使这两个数据框出来

            df1       df2
              A    B    A    B
2000-01-01  1.4  1.4  0.6 -0.3
2000-01-02  1.7 -1.9 -0.4  0.6
2000-01-03 -0.2 -0.8  1.1 -1.0
提问于
用户回答回答于

这是一个文档示例:http : //pandas.pydata.org/pandas-docs/stable/merging.html#more-concatenating-with-group-keys

In [9]: df1 = pd.DataFrame(np.random.randn(3,2),columns=list('AB'),index=pd.date_range('20000101',periods=3))

In [10]: df2 = pd.DataFrame(np.random.randn(3,2),columns=list('AB'),index=pd.date_range('20000101',periods=3))

In [11]: df1
Out[11]: 
                   A         B
2000-01-01  0.129994  1.189608
2000-01-02 -1.126812  1.087617
2000-01-03 -0.930070  0.253098

In [12]: df2
Out[12]: 
                   A         B
2000-01-01  0.535700 -0.769533
2000-01-02 -1.698531 -0.456667
2000-01-03  0.451622 -1.500175

In [13]: pd.concat(dict(df1 = df1, df2 = df2),axis=1)
Out[13]: 
                 df1                 df2          
                   A         B         A         B
2000-01-01  0.129994  1.189608  0.535700 -0.769533
2000-01-02 -1.126812  1.087617 -1.698531 -0.456667
2000-01-03 -0.930070  0.253098  0.451622 -1.500175

扫码关注云+社区

领取腾讯云代金券