如何确定列/变量在Pandas/Numpy中是否为数字?

内容来源于 Stack Overflow,并遵循CC BY-SA 3.0许可协议进行翻译与使用

  • 回答 (2)
  • 关注 (0)
  • 查看 (195)

是否有更好的方法来确定Pandas/Numpy中的变量是否是数字变量?

目前,我有一个自定义字典,其中dtype作为键,‘'numeric'/'not'作为值。

提问于
用户回答回答于

pandas 0.20.2你可以:

import pandas as pd
from pandas.api.types import is_string_dtype
from pandas.api.types import is_numeric_dtype

df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': [1.0, 2.0, 3.0]})

is_string_dtype(df['A'])
>>>> True

is_numeric_dtype(df['B'])
>>>> True
用户回答回答于

可以使用np.issubdtype。考虑以下DataFrame:

df = pd.DataFrame({'A': [1, 2, 3], 'B': [1.0, 2.0, 3.0], 
                   'C': [1j, 2j, 3j], 'D': ['a', 'b', 'c']})
df
Out: 
   A    B   C  D
0  1  1.0  1j  a
1  2  2.0  2j  b
2  3  3.0  3j  c

df.dtypes
Out: 
A         int64
B       float64
C    complex128
D        object
dtype: object

np.issubdtype(df['A'].dtype, np.number)
Out: True

np.issubdtype(df['B'].dtype, np.number)
Out: True

np.issubdtype(df['C'].dtype, np.number)
Out: True

np.issubdtype(df['D'].dtype, np.number)
Out: False

对于多列,可以使用np.vectorize:

is_number = np.vectorize(lambda x: np.issubdtype(x, np.number))
is_number(df.dtypes)
Out: array([ True,  True,  True, False], dtype=bool)

或者使用pandas的select_dtypes:

df.select_dtypes(include=[np.number])
Out: 
   A    B   C
0  1  1.0  1j
1  2  2.0  2j
2  3  3.0  3j

扫码关注云+社区