假设我有一个3D numpy.array,例如维度为x,y,z的,有没有一种方法可以沿着特定的轴迭代切片?类似于:
for layer in data.slices(dim=2):
# do something with layer编辑:为了清楚起见,示例是一个dim=3数组,即shape=(len_x,len_y,len_z)。Elazar和等效的kamjagin的解决方案可以工作,但不是通用的-你必须手动构造[:, :, i],这意味着你需要知道维数,并且代码不够通用,不能处理任意维数的数组。你可以使用像[..., :]这样的东西来填充缺失的维度,但同样,你仍然需要自己构建它。
对不起,应该说得更清楚些,这个例子有点太简单了!
发布于 2013-06-28 07:11:45
>>> data = np.arange(24).reshape(2, 3, 4)
>>> for dim_0_slice in data: # the first dimension is easy
... print dim_0_slice
...
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]
>>> for dim_1_slice in np.rollaxis(data, 1): # for the others, roll it to the front
... print dim_1_slice
...
[[ 0 1 2 3]
[12 13 14 15]]
[[ 4 5 6 7]
[16 17 18 19]]
[[ 8 9 10 11]
[20 21 22 23]]
>>> for dim_2_slice in np.rollaxis(data, 2):
... print dim_2_slice
...
[[ 0 4 8]
[12 16 20]]
[[ 1 5 9]
[13 17 21]]
[[ 2 6 10]
[14 18 22]]
[[ 3 7 11]
[15 19 23]]编辑一些计时,以比较不同的方法对较大的数组:
In [7]: a = np.arange(200*100*300).reshape(200, 100, 300)
In [8]: %timeit for j in xrange(100): a[:, j]
10000 loops, best of 3: 60.2 us per loop
In [9]: %timeit for j in xrange(100): a[:, j, :]
10000 loops, best of 3: 82.8 us per loop
In [10]: %timeit for j in np.rollaxis(a, 1): j
10000 loops, best of 3: 28.2 us per loop
In [11]: %timeit for j in np.swapaxes(a, 0, 1): j
10000 loops, best of 3: 26.7 us per loop发布于 2013-06-28 06:57:12
这可能比这更优雅地解决,但如果你事先知道dim (例如2),一种方法是:
for i in range(data.shape[dim]):
layer = data[:,:,i]或者如果是dim=0
for i in range(data.shape[dim]):
layer = data[i,:,:]等。
发布于 2013-06-28 06:55:47
像这样的吗?
>>> data = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> for layer in [data[:,i] for i in range(3)]:
... print layer
...
[1 4 7]
[2 5 8]
[3 6 9]https://stackoverflow.com/questions/17354439
复制相似问题