首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >大熊猫数据中关键词组合的检索分类

大熊猫数据中关键词组合的检索分类
EN

Stack Overflow用户
提问于 2022-11-16 12:44:50
回答 1查看 24关注 0票数 0

这是Searching for certain keywords in pandas dataframe for classification的后续问题。

我有一个关键字列表,我想根据这些关键字对职务说明进行分类。以下是输入文件、示例关键字和代码

代码语言:javascript
运行
复制
job_description
Managing engineer is responsible for
This job entails assisting to
Engineer is required the execute
Pilot should be able to control
Customer specialist advices
Different cases brought by human resources department


cat_dict = {
    "manager": ["manager", "president", "management", "managing"],
    "assistant": ["assistant", "assisting", "customer specialist"],
    "engineer": ["engineer", "engineering", "scientist", "architect"],
    "HR": ["human resources"]
}

def classify(desc):
    for cat, lst in cat_dict.items():
        if any(x in desc.lower() for x in lst):
            return cat

df['classification'] = df["job_description"].apply(classify)

如果只有一个词,如“母亲”或“助理”,则守则运作良好,但当有“客户专家”或“人力资源”这两个词时,则无法识别情况。

EN

Stack Overflow用户

发布于 2022-11-16 13:05:28

我想你在cat_dict字典里少了一个逗号。我试过你的例子:

代码语言:javascript
运行
复制
import pandas as pd

cat_dict = {
    "manager": ["manager", "president", "management", "managing"],
    "assistant": ["assistant", "assisting", "customer specialist"],
    "engineer": ["engineer", "engineering", "scientist", "architect"],
    "HR": ["human resources"]
}

def classify(desc):
    for cat, lst in cat_dict.items():
        if any(x in desc.lower() for x in lst):
            return cat

text_df = pd.Series(text.split('\n')[1:])
text_df.apply(classify)

结果:

代码语言:javascript
运行
复制
0      manager
1    assistant
2     engineer
3         None
4    assistant
5           HR
dtype: object

成功地将“客户专家”助理和“人力资源”人力资源分类。

票数 1
EN
查看全部 1 条回答
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/74460677

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档