我有两个数据格式: df1和df2,如下所示:
#df1
counts freqs
categories
automatic 13 0.40625
manual 19 0.59375
#df2
counts freqs
categories
Straight Engine 18 0.5625
V engine 14 0.4375有谁能解释一下为什么pd.concat([df1, df2], axis = 1)不给我这个答案:
counts freqs
categories
automatic 13 0.40625
manual 19 0.59375
Straight Engine 18 0.5625
V engine 14 0.4375这里是我尝试过的:
1-使用pd.concat()
我怀疑我构建这些数据文件的方式可能是问题的根源。下面是我如何得到这些特定的数据文件:
# imports
import pandas as pd
from pydataset import data # pip install pydataset to get datasets from R
# load data
df_mtcars = data('mtcars')
# change dummyvariables to more describing variables:
df_mtcars['am'][df_mtcars['am'] == 0] = 'manual'
df_mtcars['am'][df_mtcars['am'] == 1] = 'automatic'
df_mtcars['vs'][df_mtcars['vs'] == 0] = 'Straight Engine'
df_mtcars['vs'][df_mtcars['vs'] == 1] = 'V engine'
# describe categorical variables
df1 = pd.Categorical(df_mtcars['am']).describe()
df2 = pd.Categorical(df_mtcars['vs']).describe()我理解“类别”是造成这里问题的原因,因为df_con = pd.concat([df1, df2], axis = 1)引发了这个错误:
TypeError:类别在追加时必须与现有类别匹配
但让我困惑的是,这没什么大不了的:
# code
df_con = pd.concat([df1, df2], axis = 1)
# output:
counts freqs counts freqs
categories
automatic 13.0 0.40625 NaN NaN
manual 19.0 0.59375 NaN NaN
Straight Engine NaN NaN 18.0 0.5625
V engine NaN NaN 14.0 0.43752-使用df.append()会引发与pd.concat()相同的错误
3-使用pd.merge()是一种工作,但我正在丢失索引:
# Code
df_merge = pd.merge(df1, df2, how = 'outer')
# Output
counts freqs
0 13 0.40625
1 19 0.59375
2 18 0.56250
3 14 0.437503-在转置数据中使用pd.concat()
由于pd.concat()与axis = 0一起工作,我想我可以使用transposed实现它。
# df1.T
categories automatic manual
counts 13.00000 19.00000
freqs 0.40625 0.59375
# df2.T
categories Straight Engine V engine
counts 18.0000 14.0000
freqs 0.5625 0.4375但仍未取得成功:
# code
df_con = pd.concat([df1.T, df2.T], axis = 1)
>>> TypeError: categories must match existing categories when appending顺便说一句,我在这里希望的是:
categories automatic manual Straight Engine V engine
counts 13.00000 19.00000 18.0000 14.0000
freqs 0.40625 0.59375 0.5625 0.4375不过,仍然可以使用axis = 0:
# code
df_con = pd.concat([df1.T, df2.T], axis = 0)
# Output
categories automatic manual Straight Engine V engine
counts 13.00000 19.00000 NaN NaN
freqs 0.40625 0.59375 NaN NaN
counts NaN NaN 18.0000 14.0000
freqs NaN NaN 0.5625 0.4375但这还远没有达到我想要达到的目的。
现在我认为可以删除df1和df2中的“类别”信息,但是我还没有找到如何做到这一点。
谢谢您的任何其他建议!
发布于 2018-06-21 10:23:03
尝尝这个,
pd.concat([df1.reset_index(),df2.reset_index()],ignore_index=True)输出:
categories counts freqs
0 automatic 13 0.40625
1 manual 19 0.59375
2 Straight Engine 18 0.56250
3 V engine 14 0.43750要再次获得作为索引的类别,请遵循以下步骤,
pd.concat([df1.reset_index(),df2.reset_index()],ignore_index=True).set_index('categories')输出:
counts freqs
categories
automatic 13 0.40625
manual 19 0.59375
Straight Engine 18 0.56250
V engine 14 0.43750有关更多详细信息,请访问这个医生
https://stackoverflow.com/questions/50965581
复制相似问题