首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >新形状和旧形状必须有相同数量的元素。

新形状和旧形状必须有相同数量的元素。
EN

Stack Overflow用户
提问于 2018-10-09 21:16:04
回答 1查看 615关注 0票数 7

为了学习目的,我使用了Tensorflow.js,当我尝试使用带有批处理数据集(10×10)的fit方法来学习批处理培训过程时,我遇到了一个错误。

我有一些图像600x600x3我想分类(2个输出,要么1,要么0)

这是我的训练循环:

代码语言:javascript
运行
复制
  const batches = await loadDataset()

  for (let i = 0; i < batches.length; i++) {
    const batch = batches[i]
    const xs = batch.xs.reshape([batch.size, 600, 600, 3])
    const ys = tf.oneHot(batch.ys, 2)

    console.log({
      xs: xs.shape,
      ys: ys.shape,
    })
    // { xs: [ 10, 600, 600, 3 ], ys: [ 10, 2 ] }

    const history = await model.fit(
      xs, ys,
      {
        batchSize: batch.size,
        epochs: 1
      }) // <----- The code throws here

    const loss = history.history.loss[0]
    const accuracy = history.history.acc[0]

    console.log({ loss, accuracy })
  }

下面是我如何定义数据集的方法

代码语言:javascript
运行
复制
const chunks = chunk(examples, BATCH_SIZE)

const batches = chunks.map(
  batch => {
    const ys = tf.tensor1d(batch.map(e => e.y), 'int32')
    const xs = batch
      .map(e => imageToInput(e.x, 3))
      .reduce((p, c) => p ? p.concat(c) : c)
    return { size: batch.length, xs , ys }
  }
)

以下是模型:

代码语言:javascript
运行
复制
const model = tf.sequential()
model.add(tf.layers.conv2d({
  inputShape: [600, 600, 3],
  kernelSize: 60,
  filters: 50,
  strides: 20,
  activation: 'relu',
  kernelInitializer: 'VarianceScaling'
}))
model.add(tf.layers.maxPooling2d({
  poolSize: [20, 20],
  strides: [20, 20]
}))
model.add(tf.layers.conv2d({
  kernelSize: 5,
  filters: 100,
  strides: 20,
  activation: 'relu',
  kernelInitializer: 'VarianceScaling'
}))

model.add(tf.layers.maxPooling2d({
  poolSize: [20, 20],
  strides: [20, 20]
}))
model.add(tf.layers.flatten())
model.add(tf.layers.dense({
  units: 2,
  kernelInitializer: 'VarianceScaling',
  activation: 'softmax'
}))

在for-循环的第一次迭代中,我从.fit中得到一个错误,如下所示:

代码语言:javascript
运行
复制
Error: new shape and old shape must have the same number of elements.
    at Object.assert (/Users/person/nn/node_modules/@tensorflow/tfjs-core/dist/util.js:36:15)
    at reshape_ (/Users/person/nn/node_modules/@tensorflow/tfjs-core/dist/ops/array_ops.js:271:10)
    at Object.reshape (/Users/person/nn/node_modules/@tensorflow/tfjs-core/dist/ops/operation.js:23:29)
    at Tensor.reshape (/Users/person/nn/node_modules/@tensorflow/tfjs-core/dist/tensor.js:273:26)
    at Object.derB [as $b] (/Users/person/nn/node_modules/@tensorflow/tfjs-core/dist/ops/binary_ops.js:32:24)
    at _loop_1 (/Users/person/nn/node_modules/@tensorflow/tfjs-core/dist/tape.js:90:47)
    at Object.backpropagateGradients (/Users/person/nn/node_modules/@tensorflow/tfjs-core/dist/tape.js:108:9)
    at /Users/person/nn/node_modules/@tensorflow/tfjs-core/dist/engine.js:334:20
    at /Users/person/nn/node_modules/@tensorflow/tfjs-core/dist/engine.js:91:22
    at Engine.scopedRun (/Users/person/nn/node_modules/@tensorflow/tfjs-core/dist/engine.js:101:23)

我不知道从中能理解什么,也没有发现任何关于具体错误的文档或帮助,有什么想法吗?

EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2018-10-10 22:16:53

模型的问题在于convolutionmaxPooling一起应用的方式。

第一层是用20、20和50个滤波器进行kernelSize 60的卷积。该层的输出将具有近似形状的[600 / 20, 600 / 20, 50] = [30, 30, 50]

最大池以[20, 20]的步调应用。这一层的输出也将具有近似形状的[30 / 20, 30 / 20, 50] =[1, 1, 50 ]

从这一步开始,模型不能再与kernelSize 5进行卷积,因为内核形状[5, 5]大于输入形状[1, 1],导致抛出的误差。该模型唯一能实现的卷积是核的卷积,其大小为1。显然,该卷积不需要任何变换就能输出输入。

同样的规则适用于最后一个maxPooling,它的poolingSize不能与1不同,否则将引发错误。

下面是一个片段:

代码语言:javascript
运行
复制
const model = tf.sequential()
model.add(tf.layers.conv2d({
  inputShape: [600, 600, 3],
  kernelSize: 60,
  filters: 50,
  strides: 20,
  activation: 'relu',
  kernelInitializer: 'VarianceScaling'
}))
model.add(tf.layers.maxPooling2d({
  poolSize: [20, 20],
  strides: [20, 20]
}))
model.add(tf.layers.conv2d({
  kernelSize: 1,
  filters: 100,
  strides: 20,
  activation: 'relu',
  kernelInitializer: 'VarianceScaling'
}))

model.add(tf.layers.maxPooling2d({
  poolSize: 1,
  strides: [20, 20]
}))
model.add(tf.layers.flatten())
model.add(tf.layers.dense({
  units: 2,
  kernelInitializer: 'VarianceScaling',
  activation: 'softmax'
}))

model.compile({optimizer: 'sgd', loss: 'meanSquaredError'});
model.fit(tf.ones([10, 600, 600, 3]), tf.ones([10, 2]), {batchSize: 4});

model.predict(tf.ones([1, 600, 600, 3])).print()
代码语言:javascript
运行
复制
<html>
  <head>
    <!-- Load TensorFlow.js -->
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@0.13.0"> </script>
  </head>

  <body>
  </body>
</html>

票数 2
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/52729443

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档