我有一个具有时间和值的矩阵/数据:
# time # Value
M = [[2018-08-08 12:00:00, 5],
[2018-08-08 12:00:00, 7],
[2018-08-08 13:00:00, 2],]我想按小时分组,然后计算组的平均值,然后修改/减少每个组,使其只有值<=这个平均值。
现行版本:
grouped = M.groupby(pd.Grouper(key='time', freq='1h'))
means = grouped['value'].mean().values # np.array([6, 2])我被卡住了。我得到每一组的平均值。但我不知道如何减少“分组”,以便条件适用于该组的分组[分组‘值’<=意指]。
谢谢你的建议。
预期产出:
N = [[2018-08-08 12:00:00, 5], # as 5 <= 6 where 6 is the mean of the first group
[2018-08-08 13:00:00, 2]] # as 2 is <= 2 where 2 is the mean of the second group发布于 2018-11-18 11:09:27
使用GroupBy.transform表示与原始DataFrame大小相同的聚合值填充的Series,因此boolean indexing运行得非常好:
M = [['2018-08-08 12:00:00', 5],
['2018-08-08 12:00:00', 7],
['2018-08-08 13:00:00', 2]]
M = pd.DataFrame(M, columns=['time','value'])
M['time'] = pd.to_datetime(M['time'])
print (M)
time value
0 2018-08-08 12:00:00 5
1 2018-08-08 12:00:00 7
2 2018-08-08 13:00:00 2
s = M.groupby(pd.Grouper(key='time', freq='1h'))['value'].transform('mean')
print (s)
0 6
1 6
2 2
Name: value, dtype: int64
mean = 5
df = M[s <= mean]
print (df)
time value
2 2018-08-08 13:00:00 2编辑:
还可以按列值进行比较:
df1 = M[M['value'] <= s]
print (df1)
time value
0 2018-08-08 12:00:00 5
2 2018-08-08 13:00:00 2https://stackoverflow.com/questions/53359833
复制相似问题