首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >为什么ndcg_score会产生NaN值?

为什么ndcg_score会产生NaN值?
EN

Stack Overflow用户
提问于 2021-05-17 06:06:33
回答 1查看 75关注 0票数 0

考虑以下代码:

代码语言:javascript
运行
复制
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report, ndcg_score, make_scorer
from sklearn.svm import SVC

X_data = pd.DataFrame(np.random.randint(0,1,size=(100, 4)), columns=list('ABCD'))

X_data = sp.csr_matrix(X_data.to_numpy())
Y_data = pd.DataFrame(np.random.choice([0,1,5], 100), columns=['Y'])

# Set the parameters by cross-validation
param_grid = {'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
                     'C': [1, 10, 100, 1000]}

clf = GridSearchCV(SVC(), param_grid, scoring=ndcg_score, refit=True, verbose=3, n_jobs=-1, error_score='raise')
test = clf.fit(X_data, Y_data)

我想知道为什么这会引发以下错误:

代码语言:javascript
运行
复制
Fitting 5 folds for each of 8 candidates, totalling 40 fits
---------------------------------------------------------------------------
_RemoteTraceback                          Traceback (most recent call last)
_RemoteTraceback: 
"""
Traceback (most recent call last):
  File "C:\Users\test\Anaconda3\envs\kaggleSVM\lib\site-packages\joblib\externals\loky\process_executor.py", line 431, in _process_worker
    r = call_item()
  File "C:\Users\test\Anaconda3\envs\kaggleSVM\lib\site-packages\joblib\externals\loky\process_executor.py", line 285, in __call__
    return self.fn(*self.args, **self.kwargs)
  File "C:\Users\test\Anaconda3\envs\kaggleSVM\lib\site-packages\joblib\_parallel_backends.py", line 595, in __call__
    return self.func(*args, **kwargs)
  File "C:\Users\test\Anaconda3\envs\kaggleSVM\lib\site-packages\joblib\parallel.py", line 262, in __call__
    return [func(*args, **kwargs)
  File "C:\Users\test\Anaconda3\envs\kaggleSVM\lib\site-packages\joblib\parallel.py", line 262, in <listcomp>
    return [func(*args, **kwargs)
  File "C:\Users\test\Anaconda3\envs\kaggleSVM\lib\site-packages\sklearn\utils\fixes.py", line 222, in __call__
    return self.function(*args, **kwargs)
  File "C:\Users\test\Anaconda3\envs\kaggleSVM\lib\site-packages\sklearn\model_selection\_validation.py", line 625, in _fit_and_score
    test_scores = _score(estimator, X_test, y_test, scorer, error_score)
  File "C:\Users\test\Anaconda3\envs\kaggleSVM\lib\site-packages\sklearn\model_selection\_validation.py", line 687, in _score
    scores = scorer(estimator, X_test, y_test)
  File "C:\Users\test\Anaconda3\envs\kaggleSVM\lib\site-packages\sklearn\utils\validation.py", line 74, in inner_f
    return f(**kwargs)
  File "C:\Users\test\Anaconda3\envs\kaggleSVM\lib\site-packages\sklearn\metrics\_ranking.py", line 1564, in ndcg_score
    y_true = check_array(y_true, ensure_2d=False)
  File "C:\Users\test\Anaconda3\envs\kaggleSVM\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
    return f(*args, **kwargs)
  File "C:\Users\test\Anaconda3\envs\kaggleSVM\lib\site-packages\sklearn\utils\validation.py", line 710, in check_array
    array = array.astype(np.float64)
TypeError: float() argument must be a string or a number, not 'SVC'
"""

The above exception was the direct cause of the following exception:

TypeError                                 Traceback (most recent call last)
<ipython-input-45-93a8890b095c> in <module>
     18 
     19 clf = GridSearchCV(SVC(), param_grid, scoring=ndcg_score, refit=True, verbose=3, n_jobs=-1, error_score='raise')
---> 20 test = clf.fit(X_data, Y_data)
     21 #print(test.best_score_)

~\Anaconda3\envs\kaggleSVM\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs)
     61             extra_args = len(args) - len(all_args)
     62             if extra_args <= 0:
---> 63                 return f(*args, **kwargs)
     64 
     65             # extra_args > 0

~\Anaconda3\envs\kaggleSVM\lib\site-packages\sklearn\model_selection\_search.py in fit(self, X, y, groups, **fit_params)
    839                 return results
    840 
--> 841             self._run_search(evaluate_candidates)
    842 
    843             # multimetric is determined here because in the case of a callable

~\Anaconda3\envs\kaggleSVM\lib\site-packages\sklearn\model_selection\_search.py in _run_search(self, evaluate_candidates)
   1294     def _run_search(self, evaluate_candidates):
   1295         """Search all candidates in param_grid"""
-> 1296         evaluate_candidates(ParameterGrid(self.param_grid))
   1297 
   1298 

~\Anaconda3\envs\kaggleSVM\lib\site-packages\sklearn\model_selection\_search.py in evaluate_candidates(candidate_params, cv, more_results)
    793                               n_splits, n_candidates, n_candidates * n_splits))
    794 
--> 795                 out = parallel(delayed(_fit_and_score)(clone(base_estimator),
    796                                                        X, y,
    797                                                        train=train, test=test,

~\Anaconda3\envs\kaggleSVM\lib\site-packages\joblib\parallel.py in __call__(self, iterable)
   1052 
   1053             with self._backend.retrieval_context():
-> 1054                 self.retrieve()
   1055             # Make sure that we get a last message telling us we are done
   1056             elapsed_time = time.time() - self._start_time

~\Anaconda3\envs\kaggleSVM\lib\site-packages\joblib\parallel.py in retrieve(self)
    931             try:
    932                 if getattr(self._backend, 'supports_timeout', False):
--> 933                     self._output.extend(job.get(timeout=self.timeout))
    934                 else:
    935                     self._output.extend(job.get())

~\Anaconda3\envs\kaggleSVM\lib\site-packages\joblib\_parallel_backends.py in wrap_future_result(future, timeout)
    540         AsyncResults.get from multiprocessing."""
    541         try:
--> 542             return future.result(timeout=timeout)
    543         except CfTimeoutError as e:
    544             raise TimeoutError from e

~\Anaconda3\envs\kaggleSVM\lib\concurrent\futures\_base.py in result(self, timeout)
    442                     raise CancelledError()
    443                 elif self._state == FINISHED:
--> 444                     return self.__get_result()
    445                 else:
    446                     raise TimeoutError()

~\Anaconda3\envs\kaggleSVM\lib\concurrent\futures\_base.py in __get_result(self)
    387         if self._exception:
    388             try:
--> 389                 raise self._exception
    390             finally:
    391                 # Break a reference cycle with the exception in self._exception

TypeError: float() argument must be a string or a number, not 'SVC'

我不太确定为什么这会导致TypeError。

EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2021-05-18 06:05:34

我不能重新创建您报告的错误,但是使用error_score="raise"n_jobs=1 (不是绝对必要的,但输出更容易阅读),并将ndcg_scoremake_scorer包装在needs_proba=True中,我得到以下结果:

代码语言:javascript
运行
复制
Only ('multilabel-indicator', 'continuous-multioutput', 'multiclass-multioutput') formats are supported. Got multiclass instead

这支持我的第一个评论: NDCG采用多标签格式。这表明您需要了解NDCG是否真的适合您的任务,如果是这样的话,要么将您的问题转换为多标签问题,要么编写一个自定义计分器,在计算分数之前将多类输出转换为多标签(单热编码)。

票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/67561958

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档