首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >如何在Tensorboard中显示自定义图像(例如Matplotlib图)?

如何在Tensorboard中显示自定义图像(例如Matplotlib图)?
EN

Stack Overflow用户
提问于 2016-07-24 00:15:44
回答 8查看 35.5K关注 0票数 38

Tensorboard ReadMe的Image Dashboard部分说:

由于图像仪表板支持任意pngs,因此您可以使用它将自定义可视化(例如matplotlib散点图)嵌入到TensorBoard中。

我看到了如何将pyplot图像写入文件,作为张量读回,然后与tf.image_summary()一起使用,将其写入TensorBoard,但自述文件中的这条语句表明还有一种更直接的方法。在那里吗?如果是这样,是否有进一步的文档和/或示例说明如何有效地执行此操作?

EN

回答 8

Stack Overflow用户

回答已采纳

发布于 2016-07-31 01:51:10

如果你在内存缓冲区中有图像,这是很容易做到的。下面,我展示了一个示例,其中pyplot被保存到缓冲区,然后转换为TF图像表示,然后将其发送到图像摘要。

代码语言:javascript
复制
import io
import matplotlib.pyplot as plt
import tensorflow as tf


def gen_plot():
    """Create a pyplot plot and save to buffer."""
    plt.figure()
    plt.plot([1, 2])
    plt.title("test")
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    return buf


# Prepare the plot
plot_buf = gen_plot()

# Convert PNG buffer to TF image
image = tf.image.decode_png(plot_buf.getvalue(), channels=4)

# Add the batch dimension
image = tf.expand_dims(image, 0)

# Add image summary
summary_op = tf.summary.image("plot", image)

# Session
with tf.Session() as sess:
    # Run
    summary = sess.run(summary_op)
    # Write summary
    writer = tf.train.SummaryWriter('./logs')
    writer.add_summary(summary)
    writer.close()

这提供了以下TensorBoard可视化:

票数 45
EN

Stack Overflow用户

发布于 2018-03-27 18:23:03

我的回答有点晚了。使用tf-matplotlib,一个简单的散点图可以归结为:

代码语言:javascript
复制
import tensorflow as tf
import numpy as np

import tfmpl

@tfmpl.figure_tensor
def draw_scatter(scaled, colors): 
    '''Draw scatter plots. One for each color.'''  
    figs = tfmpl.create_figures(len(colors), figsize=(4,4))
    for idx, f in enumerate(figs):
        ax = f.add_subplot(111)
        ax.axis('off')
        ax.scatter(scaled[:, 0], scaled[:, 1], c=colors[idx])
        f.tight_layout()

    return figs

with tf.Session(graph=tf.Graph()) as sess:

    # A point cloud that can be scaled by the user
    points = tf.constant(
        np.random.normal(loc=0.0, scale=1.0, size=(100, 2)).astype(np.float32)
    )
    scale = tf.placeholder(tf.float32)        
    scaled = points*scale

    # Note, `scaled` above is a tensor. Its being passed `draw_scatter` below. 
    # However, when `draw_scatter` is invoked, the tensor will be evaluated and a
    # numpy array representing its content is provided.   
    image_tensor = draw_scatter(scaled, ['r', 'g'])
    image_summary = tf.summary.image('scatter', image_tensor)      
    all_summaries = tf.summary.merge_all() 

    writer = tf.summary.FileWriter('log', sess.graph)
    summary = sess.run(all_summaries, feed_dict={scale: 2.})
    writer.add_summary(summary, global_step=0)

执行时,这将在Tensorboard内部生成以下图

请注意,tf-matplotlib负责评估任何张量输入,避免pyplot线程问题,并支持用于运行时关键绘图的blitting。

票数 11
EN

Stack Overflow用户

发布于 2017-03-16 00:30:17

下一个脚本不使用中间RGB/PNG编码。它还修复了执行过程中额外的操作构造的问题,单个摘要被重用。

该图形的大小在执行过程中应保持不变

有效的解决方案:

代码语言:javascript
复制
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np

def get_figure():
  fig = plt.figure(num=0, figsize=(6, 4), dpi=300)
  fig.clf()
  return fig


def fig2rgb_array(fig, expand=True):
  fig.canvas.draw()
  buf = fig.canvas.tostring_rgb()
  ncols, nrows = fig.canvas.get_width_height()
  shape = (nrows, ncols, 3) if not expand else (1, nrows, ncols, 3)
  return np.fromstring(buf, dtype=np.uint8).reshape(shape)


def figure_to_summary(fig):
  image = fig2rgb_array(fig)
  summary_writer.add_summary(
    vis_summary.eval(feed_dict={vis_placeholder: image}))


if __name__ == '__main__':
      # construct graph
      x = tf.Variable(initial_value=tf.random_uniform((2, 10)))
      inc = x.assign(x + 1)

      # construct summary
      fig = get_figure()
      vis_placeholder = tf.placeholder(tf.uint8, fig2rgb_array(fig).shape)
      vis_summary = tf.summary.image('custom', vis_placeholder)

      with tf.Session() as sess:
        tf.global_variables_initializer().run()
        summary_writer = tf.summary.FileWriter('./tmp', sess.graph)

        for i in range(100):
          # execute step
          _, values = sess.run([inc, x])
          # draw on the plot
          fig = get_figure()
          plt.subplot('111').scatter(values[0], values[1])
          # save the summary
          figure_to_summary(fig)
票数 9
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/38543850

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档