ATYUN订阅号

1643 篇文章
85 人订阅

监督学习

AiTechYun

Facebook通过教机器人自学走路,推进发展更灵活的AI系统

机器人技术为推进人工智能提供了重要机会,因为教机器独立学习将有助于在其他场景中开发更有能力和更灵活的AI系统。与各种机器人合作,Facebook AI研究人员正...

603
AiTechYun

安静的半监督学习革命,一起清理未标记的数据

对于机器学习工程师来说,访问大量数据十分重要,但有标记的数据很有限。处于此困境的人可能会查阅文献,思考下一步该做什么,而文献似乎都会给出一个现成的答案:半监督学...

722
AiTechYun

决策树完全指南(上)

在最初的时候,学习机器学习(ML)可能是令人生畏的。“梯度下降”、“隐狄利克雷分配模型”或“卷积层”等术语会吓到很多人。但是也有一些友好的方法可以进入这个领域,...

693
AiTechYun

探索生成式对抗网络GAN训练的技术:自注意力和光谱标准化

最近,生成模型引起了很多关注。其中很大以部分都来自生成式对抗网络(GAN)。GAN是一个框架,由Goodfellow等人发明,其中互相竞争的网络,生成器G和鉴别...

4482
AiTechYun

NVIDIA研究人员提出新型深度学习架构,提高标识定位速度

NVIDIA的研究人员与学术界的合作者共同开发了一种新的基于深度学习的标识定位(landmark localization)架构,该架构用于寻找图像特定部分的精...

1256
AiTechYun

赫尔辛基大学AI基础教程:回归(4.3节)

我们在本节中的主要学习目标是监督学习方法的另一个很好的例子,它也和最近邻分类一样简单:线性回归。以及它的近亲逻辑回归。

1017
AiTechYun

从自编码器到变分自编码器(其一)

AiTechYun 编辑:yuxiangyu 自编码器是一种无监督学习技术,利用神经网络进行表征学习。也就是说,我们设计一个在网络中施加“瓶颈”,迫使原始输入压...

4585
AiTechYun

【学术】强化学习系列(上):关于强化学习,你需要知道的重要知识点

强化学习是一个非常有用的工具,可以在任何机器学习工具包中使用。为了能使你能够尽可能快地实现最新的模型,本系列的两篇文章是作为基础知识来设计的。这两篇文章中将分享...

3768
AiTechYun

【机器学习】伪标签(Pseudo-Labelling)的介绍:一种半监督机器学习技术

我们在解决监督机器学习的问题上取得了巨大的进步。这也意味着我们需要大量的数据来构建我们的图像分类器。但是,这并不是人类思维的学习方式。一个人的大脑不需要上百万个...

1.1K6
AiTechYun

机器学习黑客系列:模型比较与选择

训练机器学习并生成模型以供将来预测的科学被广泛使用。为了更好地解决我们的问题,我们引入了不会太复杂的代码,更高级的学习算法和统计方法。 模型的比较和选择在我关于...

4405
AiTechYun

序列预测问题的简单介绍

序列预测与其他类型的监督学习问题不同。这个序列在观察结果上被强加了一个命令:当训练模型和做预测时序列必须保存。通常,包含序列数据的预测问题被称为序列预测问题,尽...

3325
AiTechYun

机器学习入门——使用python进行监督学习

? 什么是监督学习? 在监督学习中,我们首先要导入包含训练特征和目标特征的数据集。监督式学习算法会学习训练样本与其相关的目标变量之间的关系,并应用学到的关系对...

48110

扫码关注云+社区

领取腾讯云代金券