首页
学习
活动
专区
工具
TVP
发布

图灵技术域

专栏作者
232
文章
442630
阅读量
34
订阅数
对比学习Python实现
对比学习是一种通过对比正反两个例子来学习表征的自监督学习方法。对于自监督对比学习,下一个等式是对比损失:
里克贝斯
2022-01-15
9280
逻辑回归模型及变体实现
logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。类logistic模型的相似性在于,所有这些模型中都存在logistic损失的变体,如等式1所示。
里克贝斯
2021-09-08
7290
迁移学习模型DANN实现
Individual differences in EEG signals lead to the poor generalization ability of EEG-based affective models. Transfer learning, as we introduced in the class, can eliminate the subject differences and achieve appreciable improvement in recognition performance. In this assignment, you are asked to build and evaluate a cross-subject affective model using Domain-Adversarial Neural Networks (DANN) with the SEED dataset.
里克贝斯
2021-09-08
9200
知识图谱中的结构信息建模
全球最具权威的IT研究与顾问咨询公司高德纳发布了2020年AI领域技术成熟度曲线,其中知识图谱的期待值处在AI领域的顶峰,还有5到10年的发展机会达到平稳期,也就是大规模商用。知识图谱这个概念是在2012年谷歌知识图谱的提出而火起来的,追根溯源,知识图谱的前身是语义网络。通俗地说,知识图谱将无序分散的信息,以图的方式整合成知识。
里克贝斯
2021-06-21
1.1K0
如何在win10 64位下搭载汇编环境(包含64位机可以使用的edit命令)
找了半天终于找到了可以在64位机下使用的edit源文件并插入到网上下载的MASM包中。
里克贝斯
2021-05-21
1K0
求n!的位数以及求n!具体的值(C or C++)
首先我们先求n!位数 可以将n!表示成10的次幂,即n!=10^M(10的M次方)则不小于M的最小整数就是 n!的位数,对该式两边取对数,有 M =log10^n! 即: M = log10^1+log10^2+log10^3…+log10^n 循环求和,就能算得M值,该M是n!的精确位数。
里克贝斯
2021-05-21
6500
计算24点程序代码
给定4个整数,其中每个数字只能使用一次;任意使用 + – * / ( ) ,构造出一个表达式,使得最终结果为24,这就是常见的算24点的游戏。这方面的程序很多,一般都是穷举求解。
里克贝斯
2021-05-21
1.2K0
多目标优化问题概述
定义:若干冲突或相互影响条件约束下在给定区域内寻找尽可能的最优解(非劣解)。 关键词:条件约束,折中最优解(解并非唯一是与单目标优化问题的本质区别) 文字描述: D个决策变量参数; N个目标函数; m+n个约束条件。 数学描述:
里克贝斯
2021-05-21
1.2K0
数据结构顺序表C实现(14个用户接口)
将顺序表(ADT SqList)的数据对象,数据关系及基本操作(函数)用C语言实现,并测试。
里克贝斯
2021-05-21
4260
NSGA-II多目标遗传算法概述
Non dominated sorting genetic algorithm -II NSGA-Ⅱ是目前最流行的多目标遗传算法之一,它降低了非劣排序遗传算法的复杂性,具有运行速度快,解集的收敛性好的优点,成为其他多目标优化算法性能的基准。 NSGA-Ⅱ就是在第一代非支配排序遗传算法的基础上改进而来,其改进主要是针对如上所述的三个方面: ①提出了快速非支配排序算法,一方面降低了计算的复杂度,另一方面它将父代种群跟子代种群进行合并,使得下一代的种群从双倍的空间中进行选取,从而保留了最为优秀的所有个体; ②引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度; ③采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性。
里克贝斯
2021-05-21
5.5K0
NSGA-II快速非支配排序算法理解
在NSGA进行非支配排序时,规模为N的种群中的每个个体都要针对M个目标函数和种群中的N-1个个体进行比较,复杂度为O(MN),因此种群中的N个个体都比较结束的复杂度为O(MN2),即每进行一次Pareto分级的时间复杂度为O(MN2)。在最坏的情况下,每个Pareto级别都只含有一个个体,那么需要进行N次分级所需要的时间复杂度则会上升为O(MN3)。鉴于此,论文中提出了一种快速非支配排序法,该方法的时间复杂度为O(MN2)。
里克贝斯
2021-05-21
2.7K1
NSGA-Ⅱ算法C++实现(测试函数为ZDT1)
https://www.omegaxyz.com/2017/04/14/nsga-iiintro/
里克贝斯
2021-05-21
1.5K0
粒子群优化(PSO)算法概述
PSO(PSO——Particle Swarm Optimization)(基于种群的随机优化技术算法) 粒子群算法模仿昆虫、兽群、鸟群和鱼群等的群集行为,这些群体按照一种合作的方式寻找食物,群体中的每个成员通过学习它自身的经验和其他成员的经验来不断改变其搜索模式。 Kennedy和Eberhart提出粒子群算法的主要设计思想与两个方面的研究密切相关: 一是进化算法,粒子群算法和进化算法一样采用种群的方式进行搜索,这使得它可以同时搜索待优化目标函数解空间中的较多区域。 二是人工生命,即研究具有生命特征的人工系统,它采用的主要工具是计算机,主要方法是利用计算机编程模拟。 Millonas在用人工生命理论来研究群居动物的行为时,对于如何采用计算机构建具有合作行为的群集人工生命系统,提出了五条基本原则: (1)邻近原则(ProximityPrinciple):群体应该能够执行简单的空间和时间运算。 (2)质量原则(Quality Principle):群体应该能感受到周围环境中质量因素的变化,并对其产生响应。 (3)反应多样性原则(Principle ofDiverse Response):群体不应将自己获取资源的途径限制在狭窄的范围之内。 (4)稳定性原则(Principle ofStability):群体不应随着环境的每一次变化而改变自己的行为模式。 (5)适应性原则(Principle ofAdaptability):当改变行为模式带来的回报是值得的时候,群体应该改变其行为模式。 其中4、5两条原则是同一个问题的两面。微粒群系统满足以上五条原则。 近十余年来,针对粒子群算法展开的研究很多,前国内外已有多人从多个方面对微粒群算法进行过综述;并出现了多本关于粒子群算法的专著和以粒子群算法为主要研究内容的博士论文。
里克贝斯
2021-05-21
1.1K0
NSGA-Ⅱ算法Matlab实现(测试函数为ZDT1)
NSGA-Ⅱ就是在第一代非支配排序遗传算法的基础上改进而来,其改进主要是针对如上所述的三个方面: ①提出了快速非支配排序算法,一方面降低了计算的复杂度,另一方面它将父代种群跟子代种群进行合并,使得下一代的种群从双倍的空间中进行选取,从而保留了最为优秀的所有个体; ②引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度; ③采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性。
里克贝斯
2021-05-21
1.8K0
算法基础-最长递增子序列
【问题1】最长递增子序列问题 【问题描述】设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<ak1,ak2,…,akm>,其中k1<k2<…<km且aK1<ak2<…<akm。求最大的m值。 采用一个数组temp[]保存 以当前元素结尾的最长递增子序列长度,最后求出全局最优解 更新最长递增子序列的条件:a[i]>a[j] (i>j) 且前一个递增序列长度大于等于当前递增序列长度
里克贝斯
2021-05-21
7320
数据结构图的基本操作及遍历(存储结构为邻接矩阵)
邻接表的存储结构遍历请看https://www.omegaxyz.com/2017/05/16/graphofds/
里克贝斯
2021-05-21
9040
数据结构7种排序算法(无基数排序)
一、实验目的 掌握多种排序方法的基本思想,包括直接插入排序、希尔排序、冒泡排序、快速排序、简单选择排序、堆排序、归并排序等,并能够用高级语言实现。通过对这些算法效率的比较,加深对算法的理解。 二、实验原理
里克贝斯
2021-05-21
3900
使用汇编语言编写的计算器
计算器实现简单的加减乘除运算(小于65536的正数) ①从键盘输入算数的等式 ②不接受复合算数如3+5*7 ③按‘=’号输出结果 ④按‘C’号作为CLEAR清零 程序分为输入模块,判断模块,计算模块,
里克贝斯
2021-05-21
9320
迪杰斯特拉算法原理Dijkstra
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。
里克贝斯
2021-05-21
1.2K0
01背包问题动态规划
首先要明确这张表是至底向上,从左到右生成的。 为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。 对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。 同理,c2=0,b2=3,a2=6。 对于承重为8的背包,a8=15,是怎么得出的呢? 根据01背包的状态转换方程,需要考察两个值, 一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi; 在这里, f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值 f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值 f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6 由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包 代码:
里克贝斯
2021-05-21
3740
点击加载更多
社区活动
腾讯技术创作狂欢月
“码”上创作 21 天,分 10000 元奖品池!
Python精品学习库
代码在线跑,知识轻松学
博客搬家 | 分享价值百万资源包
自行/邀约他人一键搬运博客,速成社区影响力并领取好礼
技术创作特训营·精选知识专栏
往期视频·千货材料·成员作品 最新动态
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档