首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

为什么我的聚合物自定义CSS属性不起作用?

聚合物自定义CSS属性不起作用可能有多种原因。以下是一些可能的原因和解决方法:

  1. 浏览器兼容性问题:不同浏览器对于自定义CSS属性的支持程度不同。在某些浏览器中,自定义CSS属性可能不被支持或存在一些限制。可以通过使用浏览器厂商的前缀来增加兼容性,例如 -webkit--moz--ms--o-
  2. CSS属性优先级问题:如果存在多个CSS规则同时作用于同一个元素,可能会导致自定义CSS属性被其他规则覆盖。可以通过提高自定义属性的优先级,例如使用更具体的选择器或者使用!important来解决。
  3. CSS属性拼写错误:检查自定义属性的拼写是否正确,包括大小写和连字符。CSS属性是区分大小写的,所以确保拼写与使用时一致。
  4. CSS属性作用域问题:自定义CSS属性可能只在特定的作用域内生效。确保自定义属性在正确的元素或选择器内使用。
  5. CSS属性继承问题:某些CSS属性不会被子元素继承,可能需要显式地将自定义属性应用于子元素。
  6. JavaScript操作问题:如果使用JavaScript动态修改CSS属性,确保修改的是正确的属性,并且在正确的时间点进行修改。

总结起来,要解决聚合物自定义CSS属性不起作用的问题,需要检查浏览器兼容性、优先级、拼写、作用域、继承和JavaScript操作等方面的问题。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【Cell】有关生物大分子凝聚体以及液液相分离的知识汇总(五)

该领域的一个主要挑战是拥有准确的指标,以确定一个特定的蛋白质或结构在细胞环境中确实是一个相分离的体。在某些条件下,当处于足够的浓度和/或人工缓冲条件时,许多蛋白质和RNA都能进行体外LLPS。此外,常见的情况是过度表达一个蛋白质,看到一个大的、球形的滴,并推断内源性表达的蛋白质也必须在较低的浓度下形成类似液体的滴,只是这些滴的大小低于光学显微镜的检测限制。然而,由于相分离需要越过一个饱和浓度,因此在解释过度表达数据时应谨慎。应该尽量找到除过度表达之外的其他指标,以支持一个区室确实是相分离的,而不仅仅是一个宏观的点状结构。

02
  • 【RNA】万字综述:生命的起源于RNA?

    达尔文的断言:“目前关于生命起源的思考纯粹是废话”,现在已经不再成立。通过综合生命起源(OoL)研究,从其开始到最近的发现,重点关注(i)原生物化学合成的原理证明和(ii)古代RNA世界的分子遗迹,我们提供了科学对OoL和RNA世界假说的全面最新描述。基于这些观察,我们巩固了这样的共识:RNA在编码蛋白质和DNA基因组之前演化,因此生物圈从一个RNA核心开始,在RNA转录和DNA复制之前产生了大部分的翻译装置和相关RNA结构。这支持了这样的结论:OoL是一个渐进的化学演化过程,涉及一系列介于原生物化学和最后的普遍共同祖先(LUCA)之间的过渡形式,其中RNA起到了核心作用,沿着这条路径的许多事件及其相对发生顺序是已知的。这一综合性合成的本质还扩展了以前的描述和概念,并应有助于提出关于古代RNA世界和OoL的未来问题和实验。

    02

    CMU阵列:3D打印实现对大规模高密度电极阵列定制化

    微电极阵列在记录电生理活动方面发挥了巨大作用,是脑功能研究的重要手段。然而目前大多数微电极的应用都受制于覆盖范围、脆性和费用方面的局限性。来自卡耐基梅隆大学的研究团队最近开发了利用3D纳米颗粒打印方法定制微电极的方法,并且在活体记录方面取得了出色的结果。这种可定制的3D多电极设备具有高电极密度,最小的肉眼组织损伤和优秀的信噪比。最重要的,3D打印的定制方法允许灵活的电极重构,例如不同的个体柄长度和布局,降低了总体通道阻抗。这种有效的设备设计使得在整个大脑中有针对性地和大规模地记录电信号成为可能,该技术发表在《Science Advances》上。

    01

    【Cancer Cell】生物分子凝聚体与肿瘤(完整版)

    癌变的特征是多种细胞过程的失调,这些过程一直是详细的遗传学、生物化学和结构学研究的主题,但直到最近,才有证据显示许多这些过程发生在生物分子凝结体的背景下。凝结体是无膜的团体,通常由液液相分离形成,将具有相关功能的蛋白质和RNA分子隔离开来。来自凝结体研究的新见解预示着我们对癌症细胞失调机制的理解将发生深刻的变化。在这里,我们总结生物分子凝结体的关键特征,指出它们已经被暗示(或很可能被暗示)在致癌发生中的作用,描述癌症治疗药物的药动学可能会受到凝结体的极大影响,并讨论一些必须解决的问题,以进一步提高我们对癌症的理解和治疗。

    02

    【Nature 重磅】世界首例自愈合弹性半导体研制成功,智能仿生机器人获突破

    【新智元导读】斯坦福大学研究人员制备出一种可用于制作晶体管的弹性聚合物,这种聚合物在受损后能自我愈合。这是科学家第一次制作出弹性半导体,为新一代可穿戴设备开辟了道路,相关论文日前在 Nature 发表。两位从事软物质物理研究的科学家在 Nature 同期评论文章中表示,该研究是在让复杂有机电子表面模仿人类皮肤的发展中的一座里程碑。 通过将刚性半导体聚合物与较软的材料结合在一起,斯坦福大学的一组研究人员制作出了像人体皮肤一样可以拉伸、形成褶皱、自我愈合的半导体,能够用于可穿戴设备、电子皮肤乃至柔性机器人。 这

    06

    Nat. Commun. | 核酸聚合物生成,机器学习来帮忙

    今天给大家介绍哈佛大学David R. Liu课题组在国际期刊nature communications上发表的核酸序列生成的文章《Generating experimentally unrelated target molecule-binding highly functionalized nucleic-acid polymers using machine learning》。虽然体外筛选是探索大范围序列空间的有效方法,但由于选择引起的序列收敛,以及有限的测序深度,使得序列的搜索空间仅局限在少数区域。为了解决该问题,作者提出结合湿实验和机器学习方式去探索未被湿实验检索的序列空间。该论文通过体外筛选,发现了与柔红霉素具有高亲和力(KD=5-65 nM)的高度侧链功能化的核酸聚合物(HFNAP)。然后利用该数据训练条件变分自编码器(CVAE)模型,生成了与柔红霉素(daunomycin)高度亲和(KD=9-26nM)且独特多样的HFNAP序列。该论文将体外筛选与机器学习模型耦合,直接生成活性变体,是一种新的发现功能性生物聚合物的方法。

    04

    2018 Cell系列相变最强综述,未来已来,你在哪?

    Trends in Cell Biology (Cell系列综述, 2018 IF: 18.564)于2018年6月1日在线发表了Steven Boeynaems(PhD Biomedical sciences, Stanford University School of Medicine, 一作兼通讯)撰写的关于蛋白质相位分离综述一文《Protein Phase Separation: A New Phase in Cell Biology》。蛋白质相变做为细胞区室形成和调节生化反应的新思路而受到越来越多的关注,同时为神经退行性疾病中无膜细胞器生物合成和蛋白质聚集的研究提供了新的框架。该综述中,总结了近年来无膜细胞器的研究现状,相变的发生、发展、调控和在疾病治疗中的应用进行了探讨,并展望了未来几年相变领域的主要问题和挑战。内容丰富,见解前沿,值得相关领域的研究者细细品读。

    01

    SceneKit_入门09_物理身体

    SceneKit_入门01_旋转人物 SceneKit_入门02_如何创建工程 SceneKit_入门03_节点 SceneKit_入门04_灯光 SceneKit_入门05_照相机 SceneKit_入门06_行为动画 SceneKit_入门07_几何体 SceneKit_入门08_材质 SceneKit_入门09_物理身体 SceneKit_入门10_物理世界 SceneKit_入门11_粒子系统 SceneKit_入门12_物理行为 SceneKit_入门13_骨骼动画 SceneKit_中级01_模型之间的过渡动画 SceneKit_中级02_SCNView 详细讲解 SceneKit_中级03_切换照相机视角 SceneKit_中级04_约束的使用 SceneKit_中级05_力的使用 SceneKit_中级06_场景的切换 SceneKit_中级07_动态修改属性 SceneKit_中级08_阴影详解 SceneKit_中级09_碰撞检测 SceneKit_中级10_滤镜效果制作 SceneKit_中级11_动画事件 SceneKit_高级01_GLSL SceneKit_高级02_粒子系统深入研究 SceneKit_高级03_自定义力 SceneKit_高级04_自定义场景过渡效果 SceneKit_高级05 检测手势点击到节点 SceneKit_高级06_加载顶点、纹理、法线坐标 SceneKit_高级07_SCNProgram用法探究 SceneKit_高级08_天空盒子制作 SceneKit_高级09_雾效果 SceneKit_大神01_掉落的文字 SceneKit_大神02_弹幕来袭 SceneKit_大神03_navigationbar上的3D文字

    03

    Nano Lett:在脂质体腔中嵌入坚硬的纳米碗以提高脂质体稳定性

    用于肿瘤治疗的脂质体受到体内循环过程中药物泄漏的困扰。近日,Nano Letters在线发表了上海交通大学基础医学院的方超教授和University at Buffalo(State University of New York)的Jonathan F. Lovell教授合作开发的新方法,通过在脂质体腔中嵌入坚硬的纳米碗来增强活性负载的阿霉素脂质体(DOX)的稳定性。纳米碗嵌入的脂质体DOX(DOX @ NbLipo)能抵抗血浆蛋白和血流剪切力的影响,以防止药物泄漏。这种方法提高了肿瘤部位的药物递送,增强了抗肿瘤功效。与修饰脂质体表面和改善膜材组成以提高稳定性的方法相比,该方法为水溶性纳米脂质体腔设计了物理支持物。纳米碗脂质体的稳定化是一种简单有效的方法,可以改善载体的稳定性。

    04
    领券