展开

关键词

卷积神经网络

type=2&id=369265&auto=1&height=66"> 卷积神经网络 卷积神经网络,它们也被称作CNNs或着ConvNets,是深层神经网络领域的主力。 下图为卷积神经网络流程图:(这里看不懂没关系) 为了帮助指导你理解卷积神经网络,我们讲采用一个非常简化的例子:确定一幅图像是包含有"X"还是"O"? 这个我们用来匹配的过程就被称为卷积操作,这也就是卷积神经网络名字的由来。 这个卷积操作背后的数学知识其实非常的简单。 具体过程如下: 对于中间部分,也是一样的操作: 为了完成我们的卷积,我们不断地重复着上述过程,将feature和图中每一块进行卷积操作。 以上为卷积神经网络的基本算法思想。

11420

卷积神经网络

卷积神经网络 详解 卷积神经网络沿用了普通的神经元网络即多层感知器的结构,是一个前馈网络。以应用于图像领域的CNN为例,大体结构如图。 卷积层 特征提取层(C层) - 特征映射层(S层)。将上一层的输出图像与本层卷积核(权重参数w)加权值,加偏置,通过一个Sigmoid函数得到各个C层,然后下采样subsampling得到各个S层。 从上例来看,会有如下变换: 全连接层 通 过不断的设计卷积核的尺寸,数量,提取更多的特征,最后识别不同类别的物体。 CNN三大核心思想 卷积神经网络CNN的出现是为了解决MLP多层感知器全连接和梯度发散的问题。 权值共享 不同的图像或者同一张图像共用一个卷积核,减少重复的卷积核。同一张图像当中可能会出现相同的特征,共享卷积核能够进一步减少权值参数。 池化 这些统计特征能够有更低的维度,减少计算量。

6630
  • 广告
    关闭

    腾讯云校园大使火热招募中!

    开学季邀新,赢腾讯内推实习机会

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    卷积神经网络

    概述 神经网络(neual networks)是人工智能研究领域的一部分,当前最流行的神经网络是深度卷积神经网络(deep convolutional neural networks, CNNs), 目前提到CNNs和卷积神经网络,学术界和工业界不再进行特意区分,一般都指深层结构的卷积神经网络,层数从”几层“到”几十上百“不定。 卷积神经网络的特点 局部连接:卷积层输出矩阵上的某个位置只与部分输入矩阵有关,而不是全部的输入矩阵。 共享卷积层 filter 的参数还可以巨幅减少神经网络上的参数。   卷积层的参数要远远小于同等情况下的全连接层。而且卷积层参数的个数和输入图片的大小无关,这使得卷积神经网络可以很好地扩展到更大的图像数据上。

    21730

    卷积神经网络

    一个卷积神经网络,或CNN的简称,是一种类型的分类,在解决这个问题,其过人之处! CNN是神经网络:一种用于识别数据模式的算法。 卷积神经网络概述 如果您以前学习过神经网络,那么您可能会觉得这些术语很熟悉。 那么,什么使CNN与众不同? image.png 卷积神经网络原理解析 卷积神经网络-输入层 输入层在做什么呢? 输入层(最左边的层)代表输入到CNN中的图像。 卷积神经网络-卷积层 image.png 卷积神经网络-池化的运算 这些内核的大小是由网络体系结构的设计人员指定的超参数。 卷积神经网络-relu激活函数 神经网络在现代技术中极为盛行-因为它们是如此的精确! 当今性能最高的CNN包含大量荒谬的图层,可以学习越来越多的功能。

    31582

    卷积神经网络卷积操作

    深度学习是一个目前非常火热的机器学习分支,而卷积神经网络(CNN)就是深度学习的一个代表性算法。 那么为什么卷积神经网络在图片任务上表现这么好呢?一大原因就是其中的卷积操作。那么什么是卷积操作呢? 卷积这一概念来源于物理领域,但在图像领域又有所不同。 我们知道,彩色图像有三个颜色通道:红绿蓝,通常,在卷积神经网络中,是对这三个通道分别进行卷积操作的,而且各通道之间的卷积核也各不相同。 卷积操作有什么好处呢? 而且在卷积神经网络中,卷积核是算法从数据中学习出来的,因此具有很大的自由度,不再需要人工的设计图像算子,因此CNN算法相当强大。 其次,卷积操作大大地降低了参数数量,从而可以避免过拟合问题。在神经网络中,待学习的参数往往数量十分庞大,因此十分容易就“记住”了训练数据,而在测试数据上表现很差,也就是说,发生了过拟合。

    61270

    卷积神经网络

    卷积神经网络 0.说在前面1.卷积神经网络1.1 卷积层1.2 汇聚层1.3 全连接层2.卷积层实现2.1 前向传播2.2 反向传播3.汇聚层3.1 前向传播3.2 反向传播4.组合层5.三层卷积神经网络 7.2 前向传播7.3 反向传播8.作者的话 0.说在前面 今天来个比较嗨皮的,那就是大家经常听到的卷积神经网络,也就是Convolutional Neural Networks,简称CNNs! 1.卷积神经网络 为了更好的理解后面的代码实现部分,这里再次回顾一下卷积神经网络的构成,主要由三种类型的层来构成:卷积层,汇聚层和全连接层! 1.1 卷积层 为了更好的理解卷积神经网络,这里给出一张图: ? 5.三层卷积神经网络 5.1 架构 首先来了解一下三层卷积神经网络的架构: conv - relu - 2x2 max pool - affine - relu - affine - softmax 5.2

    37620

    卷积神经网络

    卷积神经网络 卷积是指将卷积核应用到某个张量的所有点上,通过将 卷积核在输入的张量上滑动而生成经过滤波处理的张量。 介绍的目标识别与分类,就是在前面问题的基础 上进行扩展,实现对于图像等分类和识别。 实现对图像的高准确率识别离不开一种叫做卷积神经网络的深度学习 技术 卷积神经网络主要应用于计算机视觉相关任务,但它能处理的任务并 不局限于图像,其实语音识别也是可以使用卷积神经网络。 简单来说,卷积层是用来对输入层进行卷积,提取更高层次的特征。 ? 在这里插入图片描述 卷积层 三个参数 ksize 卷积核的大小 strides 卷积核移动的跨度 padding 边缘填充 对于图像:使用layers.Conv2D() 具体参数 layers.Conv2D 全连通层 这个层就是一个常规的神经网络,它的作用是对经过多次卷积层和多次池化层所得出来的高级特征进行全连接(全连接就是常规神经网络的性质),算出最后的预测值。

    33120

    卷积神经网络

    目标 本教程的目标是构建用于识别图像的相对较小的卷积神经网络(CNN)。在此过程中,本教程: 重点介绍网络架构,培训和评估的规范组织。 提供一个用于构建更大和更复杂的模型的模板。 教程亮点 CIFAR-10教程演示了在TensorFlow中设计更大和更复杂的模型的几个重要结构: 核心数学组件包括卷积 (wiki), 纠正线性激活 (wiki), 最大池 (wiki)和本地响应规范化 模型架构 CIFAR-10教程中的模型是由交替卷积和非线性组成的多层架构。这些层之后是通向softmax分类器的完全连接的层。 该模型的一部分组织如下: 图层名称 描述 conv1 卷积和纠正线性激活。 pool1 最大池。 norm1 本地响应规范化。 conv2 卷积和纠正线性激活。 norm2 本地响应规范化。

    351100

    04.卷积神经网络 W1.卷积神经网络(作业:手动TensorFlow 实现卷积神经网络

    文章目录 作业1:实现卷积神经网络 1. 导入一些包 2. 模型框架 3. 卷积神经网络 3.1 Zero-Padding 3.2 单步卷积 3.3 卷积神经网络 - 前向传播 4. 平均池化 - 反向传播 5.2.3 组合在一起 - 反向池化 作业2:用TensorFlow实现卷积神经网络 1. TensorFlow 模型 1.1 创建 placeholder 1.2 初始化参数 1.3 前向传播 1.4 计算损失 1.5 模型 测试题:参考博文 笔记:04.卷积神经网络 W1.卷积神经网络 作业1:实现卷积神经网络 1. 卷积神经网络 ?

    27020

    深度学习 || 23 卷积神经网络 卷积

    卷积神经网络——卷积 卷积 ( Convolution ), 也叫摺积, 是分析数学中一种重要的运算。在信号处理或图像处理中,经常使用一维或二维卷积。 ---- 一维卷积 一维卷积经常用在信号处理中,用于计算信号的延迟累积。 假设滤波器长度为 , 它和一个信号序列 的卷积为 信号序列 和滤波器 的卷积定义为 其中 表示卷积运算。一般情况下滤波器的长度 远小于信号序列长度 。 当滤波器 时, 卷积相当于信号序列的简单移动平均(窗口大小为 )。下图给出了一维卷积示例。滤波器为 连接边上的数字为滤波器中的权重。 ? ---- 二维卷积 卷积也经常用在图像处理中。因为图像为一个两维结构, 所以需要 将一维卷积进行扩展。给定一个图像 和滤波器 般 m<<m, n<<n, 下图给出了二维卷积示例。 ?

    14110

    卷积神经网络详解

    卷积神经网络(Convolutional Neural Networks,CNN)是一种前馈神经网络卷积神经网络是受生物学上感受野(Receptive Field)的机制而提出的。 卷积神经网络有三个结构上的特性:局部连接,权重共享以及空间或时间上的次采样。 这些特性使得卷积神经网络具有一定程度上的平移、缩放和扭曲不变性. 1、关于卷积的简要描述----具体的可以查看相关博文 卷积操作是分析数学中一种重要的运算。我们这里只考虑离散序列的情况。 因此,在卷积神经网络中每一组输出也叫作一组特征映射(Feature Map)。 4 梯度计算 在全连接前馈神经网络中,目标函数关于第l 层的神经元z(l) 的梯度为: ? 在卷积神经网络中,每一个卷积层后都接着一个子采样层,然后不断重复。

    49980

    卷积神经网络简介

    卷积操作 如果您想知道如何通过神经网络学到不同的特征,以及神经网络是否可能学习同样的特征(10个鼻子卷积核将是多余的),这种情况极不可能发生。 在构建网络时,我们随机指卷积核的值,然后在神经网络训练时不断更新。除非所选卷积核的数量非常大,否则很可能不会产生两个相同的卷积核。 一些卷积核的例子,或者也可以叫它过滤器,如下: ? 图片示例如何在卷积神经网络中使用full padding和same padding 填充本质上是使得卷积核产生的特征映射与原始图像的大小相同。 不同层次比较 卷积神经网络中有三种层:卷积层,池化层和全连接层。每层都有不同的参数,可以对这些参数进行优化,并对输入层执行不同的任务。 ? 卷积层的特征 卷积层是对原始图像或深度CNN中的其他特征图应用过滤器的层。这一层包含了整个神经网络中大多数由用户指定的参数。最重要的参数是核的数量和核的大小 ?

    32920

    实战卷积神经网络

    在近些年,深度学习领域的卷积神经网络(CNNs或ConvNets)在各行各业为我们解决了大量的实际问题。但是对于大多数人来说,CNN仿佛戴上了神秘的面纱。 这个过程主要有两个步骤,首先要对图片做卷积,然后找寻模式。在神经网络中,前几层是用来寻找边界和角,随着层数的增加,我们就能识别更加复杂的特征。这个性质让CNN非常擅长识别图片中的物体。 神经网络 简要介绍下神经网络神经网络的每个单元如下: ? 对应的公式: ? 该单元也可以被称作是Logistic回归模型。 当将多个单元组合起来并具有分层结构时,就形成了神经网络模型。其对于的结构图如下: ? 其对应的公式如下: ? CNN是一种特殊的神经网络,它包含卷积层、池化层和激活层。 卷积层 要想了解什么是卷积神经网络,你首先要知道卷积是怎么工作的。想象你有一个5*5矩阵表示的图片,然后你用一个3*3的矩阵在图片中滑动。

    51760

    04.卷积神经网络 W1.卷积神经网络

    卷积步长 6. 三维卷积 7. 单层卷积网络 8. 简单卷积网络示例 9. 池化层 10. 卷积神经网络示例 11. 为什么使用卷积? 作业 参考: 吴恩达视频课 深度学习笔记 1. ,处理30亿参数的神经网络,巨大的内存需求也受不了 你希望模型也能处理大图。 参数的个数跟图片大小无关,跟过滤器相关,假如有10个过滤器,上面每个过滤器有 27 个参数,加上 偏置 b,28个再乘以10,共计280个参数 即使图片很大,参数却很少,这就是卷积神经网络的一个特征,叫作 卷积神经网络示例 ? 尽量不要自己设置超参数,而是查看文献中别人采用了哪些超参数,选一个在别人任务中效果很好的架构,它也有可能适用于你的应用程序 ? 11. 为什么使用卷积神经网络可以通过这两种机制减少参数,以便我们用更小的训练集来训练它,从而预防过度拟合 作业 作业:手动/TensorFlow 实现卷积神经网络

    23540

    卷积神经网络简介

    前面介绍光学神经网络进展的笔记里(基于频率梳的光学神经网络),多次提到卷积神经网络(convolutional neural network, 以下简称CNN)。这里对CNN做一个更详细的介绍。 卷积神经网络则巧妙地解决了这个问题,使用一个小的特征矩阵,与原先的矩阵做运算,矩阵规模得以降低。 ://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac) 下图是典型的卷积神经网络的流程图 以上是对卷积神经网络的简单介绍, 认识比较肤浅。 卷积神经网络一定程度模拟了人类的视觉皮层的层次结构。卷积神经网络广泛用于计算机视觉中,包括图片的识别、分类、搜索等。 文章中如果有任何错误和不严谨之处,还望大家不吝指出,欢迎大家留言讨论。

    39410

    卷积神经网络(CNN)

    目录 1.背景 2.网络结构 3.卷积与池化 4.局部感知和参数共享 5.卷积神经网络的训练技巧 6.基于mnist的一个例子 背景 (1)先举个例子: 假设给定一张图(可能是字母X或者字母O),通过CNN 这种模式就是卷积神经网络中降低参数数目的重要神器:局部感受野。如下图所示: ? 网络结构 这里借用斯坦福CS231N里课程里给出的经典卷积神经网络的层级结构,如下图: ? 全连接层的劣势在于会产生大量的计算,需要大量的参数,但在效果上却和全局平均池化层一样,但本文将基于经典卷积神经网络进行介绍) 卷积与池化 (1)什么是卷积 卷积是一种特殊的线性运算。 卷积神经网络的训练技巧 (1)优化卷积核 在实际的卷积训练中,为了加快速度,常常把卷积核裁开。

    37450

    卷积神经网络(CNN)

    前言         CNN,即卷积神经网络,主要用于图像识别,分类。 这篇卷积神经网络是前面介绍的多层神经网络的进一步深入,它将深度学习的思想引入到了神经网络当中,通过卷积运算来由浅入深的提取图像的不同层次的特征,而利用神经网络的训练过程让整个网络自动调节卷积核的参数,从而无监督的产生了最适合的分类特征 一、卷积神经网络的网络结构         卷积神经网络主要由这几类层构成:输入层、卷积层,ReLU层、池化(Pooling)层和全连接层(全连接层和常规神经网络中的一样)。 二、卷积层         卷积层是构建卷积神经网络的核心层,它产生了网络中大部分的计算量。注意是计算量而不是参数量。          过,本文的重点不在于讲解“全连接神经网络”,本文的核心在于卷积神经网络(CNN)。 这里,你只需要记住2点: ① “全连接神经网络”可以帮助我们学习到参数θ。

    68820

    卷积神经网络 – CNN

    卷积神经网络 – CNN ? 卷积神经网络 – CNN 最擅长的就是图片的处理。它受到人类视觉神经系统的启发。 卷积神经网络 – CNN 解决的第一个问题就是「将复杂问题简化」,把大量参数降维成少量参数,再做处理。 更重要的是:我们在大部分场景下,降维并不会影响结果。 那么卷积神经网络是如何实现的呢?在我们了解 CNN 原理之前,先来看看人类的视觉原理是什么? 人类的视觉原理 深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。 卷积神经网络-CNN 的基本原理 典型的 CNN 由3个部分构成: 卷积层 池化层 全连接层 如果简单来描述的话: 卷积层负责提取图像中的局部特征;池化层用来大幅降低参数量级(降维);全连接层类似传统神经网络的部分 卷积神经网络 – CNN 很擅长处理图像。而视频是图像的叠加,所以同样擅长处理视频内容。

    14820

    卷积神经网络概述

    AlexNet 再一次吸引了广大研究人员对于卷积神经网络的兴趣,激发了卷积神经网络在研究和工业中更为广泛的应用。现在基于卷积神经网络计算机视觉还广泛的应用于医学图像处理,人脸识别,自动驾驶等领域。 越来越多的人开始了解卷积神经网络相关的技术,并且希望学习和掌握相关技术。因为卷积神经网络需要大量的标记数据集,有一些经典的数据集可以用来学习,同时解决一些常见的计算机视觉问题。 卷积神经网络的具体应用,经典数据集。 卷积神经网络简介 卷积神经网络是什么,以及卷积神经网络将如何解决计算机视觉的相关问题。 图像数据集的特点,对于神经网络的设计提出了一些新的挑战。 为了应对这种问题,Yann LeCun 在贝尔实验室做研究员的时候提出了卷积网络技术,并展示如何使用它来大幅度提高手写识别能力。接下来将介绍卷积和池化以及卷积神经网络

    65640

    卷积神经网络 – CNN

    卷积神经网络 – CNN 最擅长的就是图片的处理。它受到人类视觉神经系统的启发。 卷积神经网络-CNN 的基本原理 典型的 CNN 由3个部分构成: 卷积层 池化层 全连接层 如果简单来描述的话: 卷积层负责提取图像中的局部特征;池化层用来大幅降低参数量级(降维);全连接层类似传统神经网络的部分 下面的原理解释为了通俗易懂,忽略了很多技术细节,如果大家对详细的原理感兴趣,可以看这个视频《卷积神经网络基础》。 卷积——提取特征 卷积层的运算过程如下图,用一个卷积核扫完整张图片: ? 卷积神经网络 – CNN 很擅长处理图像。而视频是图像的叠加,所以同样擅长处理视频内容。 对卷积神经网络的研究始于二十世纪80至90年代,时间延迟网络和LeNet-5是最早出现的卷积神经网络;在二十一世纪后,随着深度学习理论的提出和数值计算设备的改进,卷积神经网络得到了快速发展,并被大量应用于计算机视觉

    60422

    相关产品

    • 云服务器

      云服务器

      云端获取和启用云服务器,并实时扩展或缩减云计算资源。云服务器 支持按实际使用的资源计费,可以为您节约计算成本。 腾讯云服务器(CVM)为您提供安全可靠的弹性云计算服务。只需几分钟,您就可以在云端获取和启用云服务器,并实时扩展或缩减云计算资源。云服务器 支持按实际使用的资源计费,可以为您节约计算成本。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券