首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何有效地将VkDispatchIndirectCommand字段提升为subgroupSize的倍数

VkDispatchIndirectCommand是Vulkan图形API中的一个结构体,用于指定间接调度命令的参数。它包含三个成员变量:x,y和z,分别表示X、Y和Z方向上的线程组数量。

要将VkDispatchIndirectCommand字段提升为subgroupSize的倍数,需要进行以下步骤:

  1. 确定subgroupSize的值:subgroupSize是指在GPU上执行的最小线程组大小。它是硬件相关的,并且可以通过查询设备属性来获取。在Vulkan中,可以使用vkGetPhysicalDeviceProperties函数获取设备属性,并查找VkPhysicalDeviceLimits结构体中的subgroupSize成员。
  2. 计算新的线程组数量:将VkDispatchIndirectCommand结构体中的x,y和z成员变量分别除以subgroupSize,并向上取整得到新的线程组数量。例如,如果subgroupSize为32,原始的x,y和z分别为10,20和30,则新的线程组数量为1,1和1。
  3. 更新VkDispatchIndirectCommand结构体:将新的线程组数量乘以subgroupSize,得到每个方向上的新的线程组数量,并将其分别赋值给VkDispatchIndirectCommand结构体的x,y和z成员变量。

通过以上步骤,就可以有效地将VkDispatchIndirectCommand字段提升为subgroupSize的倍数。这样做的好处是可以最大程度地利用GPU的并行计算能力,提高计算性能。

在腾讯云的产品中,与Vulkan相关的产品包括GPU云服务器、GPU容器服务等。您可以访问腾讯云官网的相关页面,了解更多关于这些产品的详细信息和使用方法。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

从DDR到DDR4,内存核心频率其实基本上就没太大的进步

从2001年DDR内存面世以来发展到2019年的今天,已经走过了DDR、DDR2、DDR3、DDR4四个大的规格时代了(DDR5现在也出来了)。内存的工作频率也从DDR时代的266MHz进化到了今天的3200MHz。这个频率在操作系统里叫Speed、在内存术语里叫等效频率、或干脆直接简称频率。这个频率越高,每秒钟内存IO的吞吐量越大。但其实内存有一个最最基本的频率叫核心频率,是实际内存电路的工作时的一个振荡频率。它是内存工作的基础,很大程度上会影响内存的IO延迟。我今天想给大家揭开另外一面,这个叫核心频率的东东其实在最近的18年里,基本上就没有什么太大的进步。

02
  • 告别一步一步来,你们一起上好了

    随着互联网的高速发展,企业的数字化改革与精细化运营,均对数据库能力提出了越来越高的要求,数据分析能力、异构数据处理能力等愈发重要。公司各类报表整合,年终数据盘点,分析预测等越来越多的业务开始需要进行复杂查询。 并且,爆炸性的数据量增长也使得传统的数据库能力难以应对。企业的很多业务将对数据的实时性和效率性要求越来越高,想一想你的企业是否也是这样: 想!更早更快的在数据中识别和阻断漏洞,保证业务平稳运行; 想!更快更准的定位数据,提升服务效率; 想!更多更丰富的指标和计算口径,实现业务的快速增长; 但,多数的

    02

    计算机视觉最新进展概览(2021年7月4日到2021年7月10日)

    1、Faster-LTN: a neuro-symbolic, end-to-end object detection architecture 图像对象之间的语义关系的检测是图像解释的基本挑战之一。 神经符号技术,如逻辑张量网络(LTNs),允许结合语义知识表示和推理的能力,有效地学习典型的神经网络的例子。 我们在这里提出Faster-LTN,一种由卷积主干和LTN组成的目标检测器。 据我们所知,这是在端到端训练设置中结合这两种框架的第一次尝试。 这个体系结构是通过优化一个有根据的理论来训练的,这个理论以逻辑公理的形式将标记的实例与先验知识结合起来。 实验对比表明,与传统的Faster R-CNN架构相比,该架构具有竞争力的性能。 2、Semi-supervised Learning for Dense Object Detection in Retail Scenes 零售场景的每幅图像通常包含密集的高数量的目标。 标准的目标检测技术使用完全监督的训练方法。 这是非常昂贵的,因为注释一个大型密集的零售目标检测数据集需要比标准数据集多一个数量级的工作。 因此,我们提出了半监督学习来有效地利用零售领域中大量的未标记数据。 我们采用一种流行的自监督方法,即噪声学生最初提出的目标分类的任务,密集的目标检测。 我们表明,使用无标记数据与嘈杂的学生训练方法,我们可以提高在密集的零售场景中精确检测目标的技术水平。 我们还表明,随着未标记数据数量的增加,模型的性能也会增加。 3、On Model Calibration for Long-Tailed Object Detection and Instance Segmentation 普通的目标检测模型和实例分割模型在长尾设置中存在检测频繁目标的严重偏差。 现有的方法主要在训练期间解决这个问题,例如,通过重新抽样或重新加权。 在本文中,我们调查了一个很大程度上被忽视的方法——置信度的后处理校准。 我们提出了NorCal,归一化校准用于长尾目标检测和实例分割,这是一种简单而直接的方法,通过训练样本大小重新衡量每个类的预测分数。 我们表明,单独处理后台类和对每个建议的类上的分数进行规范化是实现卓越性能的关键。 在LVIS数据集上,NorCal可以有效地改进几乎所有的基线模型,不仅在罕见类上,而且在普通类和频繁类上。 最后,我们进行了广泛的分析和消融研究,以提供我们方法的各种建模选择和机制的见解。 4、Neighbor-Vote: Improving Monocular 3D Object Detection through Neighbor Distance Voting 随着摄像头在自动驾驶等新的应用领域的不断应用,对单目图像进行三维目标检测成为视觉场景理解的重要任务。 单眼三维目标检测的最新进展主要依赖于“伪激光雷达”生成,即进行单眼深度估计并将二维像素点提升为伪三维点。 但单目图像深度估计精度不高,导致伪激光雷达点在目标内不可避免地发生位置偏移。 因此,预测的边界框位置不准确,形状变形。 在本文中,我们提出了一种新的邻域投票方法,结合邻域预测来改善严重变形的伪激光雷达点云的目标检测。 具体来说,物体周围的每个特征点形成各自的预测,然后通过投票实现“共识”。 这样可以有效地将邻居预测与局部预测相结合,实现更准确的三维检测。 为了进一步放大前景感兴趣区域(foreground region of interest, ROI)伪激光雷达点与背景点之间的差异,我们还将二维前景像素的ROI预测得分编码为相应的伪激光雷达点。 我们在KITTI基准上进行了大量的实验,以验证我们提出的方法的优点。 我们的鸟瞰图检测结果在很大程度上超过了最先进的性能,特别是“硬”水平检测。 5、VIN: Voxel-based Implicit Network for Joint 3D Object Detection and Segmentation for Lidars 提出了一种统一的神经网络结构用于三维目标检测和点云分割。 我们利用丰富的监督,从检测和分割标签,而不是只使用其中之一。 此外,基于隐式函数在三维场景和物体理解中的广泛应用,提出了一种基于单级目标检测器的扩展方法。 扩展分支以目标检测模块的最终特征图为输入,生成隐式函数,为每个点对应体素中心生成语义分布。 我们在一个大型户外数据集nuScenes-lidarseg上演示了我们的结构的性能。 我们的解决方案在三维目标检测和点云分割方面取得了与先进方法相竞争的结果,与目标检测解决方案相比,我们的附加计算负荷很小。 实验结果表明,该方法具有较好的弱监督语义切分能力。

    04

    技术干货 | 详解 MongoDB 中的 null 性能问题及应对方法

    在使用 Oracle、MySQL 以及 MongoDB 数据库时,其中查询时经常遇到 null 的性能问题,例如 Oracle 的索引中不记录全是 null 的记录,MongoDB 中默认索引中会记录全是 null 的文档,MongoDB 查询等于 null 时,表示索引字段对应值是 null 同时还包括字段不存在的文档。因为 MongoDB 是动态模式,允许每一行的字段都不一样,例如记录 1 中包括包括字段 A 等于 1,记录 2 包括字段 A 等于 null,记录 3 不包括字段 A,那么索引中不仅会包括 A 等于 null 的文档,同时也记录不包括 A 字段的文档,同样会赋予 null 值(空数组属于特殊的)。正是由于这些设计规则不同,难免在使用过程中遇到各种性能问题。常见查询包括统计 null 总数以及对应明细数据。其中以汇总统计为例:

    04

    MongoDB中null性能问题以及如何应对

    在使用ORACLE、MYSQL以及MongoDB数据库时,其中查询时经常遇到NULL的性能问题,例如Oracle的索引中不记录全是NULL的记录,MongoDB中默认索引中会记录全是null的文档,MongoDB查询等于null时,表示索引字段对应值是null同时还包括字段不存在的文档.因为MongoDB是动态模式,允许每一行的字段都不一样,例如记录1中包括包括字段A等于1,记录2包括字段A等于null,记录3不包括字段A,那么索引中不仅会包括A等于null的文档,同时也记录不包括A字段的文档,同样会赋予null值(空数组属于特殊的).正是由于这些设计规则不同,难免在使用过程中就会遇到各种性能问题.常见查询包括统计null总数以及对应明细数据.其中以汇总统计为例.

    01

    kafka0.8--0.11各个版本特性预览介绍

    kafka-0.8.2 新特性 producer不再区分同步(sync)和异步方式(async),所有的请求以异步方式发送,这样提升了客户端效率。producer请求会返回一个应答对象,包括偏移量或者错误信。这种异步方地批量的发送消息到kafka broker节点,因而可以减少server端资源的开销。新的producer和所有的服务器网络通信都是异步地,在ack=-1模式下需要等待所有的replica副本完成复制时,可以大幅减少等待时间。   在0.8.2之前,kafka删除topic的功能存在bug。   在0.8.2之前,comsumer定期提交已经消费的kafka消息的offset位置到zookeeper中保存。对zookeeper而言,每次写操作代价是很昂贵的,而且zookeeper集群是不能扩展写能力的。在0.8.2开始,可以把comsumer提交的offset记录在compacted topic(__comsumer_offsets)中,该topic设置最高级别的持久化保证,即ack=-1。__consumer_offsets由一个三元组< comsumer group, topic, partiotion> 组成的key和offset值组成,在内存也维持一个最新的视图view,所以读取很快。 kafka可以频繁的对offset做检查点checkpoint,即使每消费一条消息提交一次offset。   在0.8.1中,已经实验性的加入这个功能,0.8.2中可以广泛使用。auto rebalancing的功能主要解决broker节点重启后,leader partition在broker节点上分布不均匀,比如会导致部分节点网卡流量过高,负载比其他节点高出很多。auto rebalancing主要配置如下, controlled.shutdown.enable ,是否在在关闭broker时主动迁移leader partition。基本思想是每次kafka接收到关闭broker进程请求时,主动把leader partition迁移到其存活节点上,即follow replica提升为新的leader partition。如果没有开启这个参数,集群等到replica会话超时,controller节点才会重现选择新的leader partition,这些leader partition在这段时间内也不可读写。如果集群非常大或者partition 很多,partition不可用的时间将会比较长。   1)可以关闭unclean leader election,也就是不在ISR(IN-Sync Replica)列表中的replica,不会被提升为新的leader partition。unclean.leader.election=false时,kafka集群的持久化力大于可用性,如果ISR中没有其它的replica,会导致这个partition不能读写。   2)设置min.isr(默认值1)和 producer使用ack=-1,提高数据写入的持久性。当producer设置了ack=-1,如果broker发现ISR中的replica个数小于min.isr的值,broker将会拒绝producer的写入请求。max.connections.per.ip限制每个客户端ip发起的连接数,避免broker节点文件句柄被耗光。

    02
    领券