展开

关键词

进来分析能力

这是陈老师测试新人的一个脑筋急转弯。如果一对一的话,被问到同学往往警惕性比较高,回答的质量也相对高。所以最好的测试方法是在大家吃完午饭闲聊的时候,冷不丁的丢到人...

19220

基于OpenMV的人脸识别,支持人脸注册、人脸检测、人脸识别

1061700625/OpenMV_Face_Recognition ''' >> author: SXF >> email: songxf1024@163.com >> description: 用LBP特征进行人脸识别 ,可进行人脸注册、人脸检测与人脸识别 Pin7高电平一次,触发人脸注册;默认低电平 UART1(Pin1)输出调试信息 UART3(Pin4)输出识别结果,当识别成功后,返回“Find It = 0: debug(res) return 1 def match(d0): # 人脸识别 dir_lists = os.listdir( ,但由于SD卡内无文件,无法匹配人脸 ? 按下F1按键,进入人脸注册模式,连续拍5张照存入SD卡(拍摄时绿灯快闪50ms,拍摄完绿灯闪1000ms) ? 再识别,可完成人脸识别(红灯闪1000ms)。

1.3K30
  • 广告
    关闭

    人脸识别限时特惠,10万次资源包仅需9.9元!!

    基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    utest压和grafana压效果(腾讯优

    一、压力测试平台-----优官网 二、10000vum免费试用 1.单接口压 创建单接口任务: 执行任务及查看报告: 导出报告: pdf格式报告: 2.全链路压 创建全链路计划 所以我这里想到的是grafana,利用grafana动态实时的资源可视化,结合优,应该效果非常棒.** 四、总结 问题: 本来想结合业务登录接口去坐个压,结果发现,优不支持application

    8520

    人脸检测——准备非人脸

    简单粗暴,不多说,直接代码吧: import os import random from PIL import Image from PIL import Im...

    36070

    人脸检测——AFLW准备人脸

    不多说了,直接代码吧: 生成AFLW_ann.txt的代码,其中包含图像名称 和 图像中人脸的位置(x,y,w,h); ** AFLW中含有aflw.aqlite文件。 f: f.writelines("%s\n" % line for line in list_annotation) AFLW图片都整理到flickr文件下(含0,1,2三个文件),生成人脸的程序 (并且对人脸进行了左右镜像): import os from PIL import Image from PIL import ImageFile # ImageFile.LOAD_TRUNCATED_IMAGES

    788100

    前端单,我们应该什么?

    相信很多前端开发在写单的时候,最大的问题就是:“我应该什么东西?” 没错,解决问题不是最难的,发现问题才是!知道要哪个远比怎么重要很多! 但是知道如何测试只是成功的一半,知道要什么才是更重要的另一半。 永远记住为什么我们要测试 我们写测试是因为要确保我们的应用程序在用户使用它们时能够正常工作。 很多人在做 React 代码测试时,经常会想到一些让他们不断 “实现细节” 的测试点。 (比如:firebase、redux store、router、media query) 该从何起? 现在我们都清楚应该要对单组件或者页面组件什么了,那你该从何起呢?

    7520

    全套 | 人脸检测 & 人脸关键点检测 & 人脸卡通化

    人脸检测历险记 可能跟我一样,人脸检测是很多人学习图像处理的第一个自驱动型的任务,OpenCV刚上手没几天可能就想先跑一跑人脸检测,然后一个坑接着一个坑的往里跳。 上面用的是深度学习模型的人脸检测,但是在此之前还是稍微回顾下OpenCV自带的人脸检测器。 OpenCV自带的人脸检测 OpenCV自带了基于级联分类器的人脸检测模型,只能检测正脸,在前深度学习时代,效果已经是很好的了。 人脸卡通化 仅仅是人脸检测,显得略微有些没意思,所以在人脸检测的基础上,加点其他的更有意思的东西,比如上次刚玩过的卡通化。 ,获取人脸框和人脸关键点的位置 稍微扩充下人脸框,进行卡通化操作 把卡通化后的人脸贴回原图中人脸的位置 完整效果 看一下完整的效果吧:【视频有声提示!】

    91150

    Android 人脸识别之人脸注册

    该项目基于讯飞SDK实现的人脸检测,使用face++的webapi实现的人脸注册以及人脸识别。 所以在整个流程中应该包含以下几个步骤 人脸检测 (FD引擎) 即从摄像头预览中检测到人脸的存在,并且使用一个矩形框出人脸的范围。 人脸识别 (FR引擎) 当检测出人脸时,对人脸进行识别,如果人脸特征集合中存在该人脸信息,读取出该人脸信息及人员信息。 ,检测图片中的人脸信息(人脸 Rect、角度),此处的 Rect 是图片中人脸位置的矩形。 第三步: 经过上述的两部,我们已经成功的从图片中识别到了人脸,并且将该人脸在图片中的位置获取到了,接下来我们要做的就是使用 FR 人脸识别引擎识别该位置人脸中的特征信息。 if (!

    2.4K30

    OpenCV人脸检测 人脸打码

    10320

    手机就可以视力,色盲,散光的小神器

    哈喽,各位小伙伴早上好,最近蛮多事情的前两天去检查了视力发现又降了,坐在电脑前的你要注意休息呀!

    1.8K20

    Elasticsearch压之Esrally压标准

    工具部署:Elasticsearch压工具esrally部署指南 - 云+社区 本文另有延伸:大数据生态关于压力测试的内容 - 云+社区 背景 在大数据时代的今天,业务量越来越大,每天动辄都会产生上百 track: 即赛道的意思,这里指压用到的样本数据和压策略,使用 esrally list tracks 列出。 如果你想针对已有的 es 进行压,则使用该模式; track-params:对默认的压参数进行覆盖; user-tag:本次压的 tag 标记; client-options:指定一些客户端连接选项 压标准 在压的过程中,需要了解到各个指标的含义。但是网络上没有完整的文档,所以这里做一个详细的总结。 压指标 压任务 指标含义 评判标准 Cumulative indexing time of primary shards - 主分片累计索引时间 越小越好 Min cumulative indexing

    987169

    人脸专集3 | 人脸关键点检测

    对于人脸关键点检测和跟踪,有从传统方法向基于深度学习的方法转变的趋势。 近年来,卷积神经网络模型成为人脸关键点检测,主要是深度学习模型,并且大多采用全局直接回归或级联回归框架。这些方法大致可分为纯学习法和混合学习法。 纯学习方法直接预测人脸关键点位置,而混合学习方法则将深度学习方法与计算机视觉投影模型相结合进行预测。 Pure-learning methods 纯学习方法:这类方法使用强大的CNNs模型从人脸图像中直接预测关键点位置。 Las Vegas, NV (2016))建立了一个密集的三维人脸模型。然后,采用迭代级联回归框架和深度CNN模型对三维人脸形状系数和姿态参数进行更新。

    89930

    人脸识别初探之人脸检测(一)

    还记的这篇OpenCV即时上手可学习可商用的项目 接下来准备把其中的代码公开,欢迎一起交流学习 人脸识别是个说小不小的工程,在完成这个项目之前,先把人脸检测熟悉一下。 人脸检测用到的函数如下: void detectMultiScale( InputArray image, CV_OUT std::vector<Rect ; namedWindow("display"); imshow("display", img); /*********************************** 1.加载人脸检测器 ******************************/ // 建立级联分类器 CascadeClassifier cascade; // 加载训练好的 人脸检测器(.xml) ='k') ; destroyWindow("display"); destroyWindow("face_detect"); return 0; } 效果如图: 打开相机进行人脸检测

    8930

    【深度学习】人脸检测与人脸识别

    基本概念 人脸是个人重要的生物特征,业界很早就对人脸图像处理技术进行了研究。人脸图像处理包括人脸检测、人脸识别、人脸检索等。 人脸检测是在输入图像中检测人脸的位置、大小;人脸识别是对人脸图像身份进行确认,人脸识别通常会先对人脸进行检测定位,再进行识别;人脸检索是根据输入的人脸图像,从图像库或视频库中检索包含该人脸的其它图像或视频 人脸检测与识别的应用 实名认证 人脸考勤 刷脸支付、刷脸检票 公共安全:罪犯抓捕、失踪人员寻找 3. 传统人脸检测与人脸识别方法 1)人脸检测 基于知识的人脸检测法。 它将典型的人脸形成规则库对人脸进行编码。通常, 通过面部特征之间的关系进行人脸定位。 基于模板匹配的人脸检测法。 该数据集包含有200K张人脸图片,人脸属性有40多种,主要用于人脸属性的识别。 5.

    34830

    你对「Activity」的了解

    在日常的移动端测试沟通过程中,我们经常会听到开发说到一些平台开发术语,本次小编将对Android四大组件之一的Activity进行些简单的介绍和测试点总结。

    39310

    扫码关注腾讯云开发者

    领取腾讯云代金券