展开

关键词

用户行为分析(Python)

本次就通过电商角度,选取阿里天池项目中的淘宝App用户行为数据利用Python进行数据分析。 一、理解需求 1. 明确分析目标及其方向 通过对用户关键行为的埋点获取的日志数据,包含用户、商品、行为、时间等信息,而看似简单的几个维度,通过数据分析手段,便能从不同角度挖掘蕴含的价值。 本次主要通过以下四个方向探索淘宝用户行为: 1.1 用户行为时间模型 PV、UV随时间变化。 留存率模型。 1.2 用户消费行为分析 各周期内消费次数统计。 各行为转化模型。 复购率模型。 1.3 用户价值分析 RFM模型。 各价值类别用户分布、购买力等。 1.4 商品分析 商品和行为关系。 TOP商品分析用户消费行为分析 2.1 转化率计算(漏斗分析) 通过漏斗分析,我们可以发现在一个多步骤过程中每一步的转化和流失情况。

30640

浅谈用户行为分析

关于用户行为分析,很多互联网公司都有相关的需求,虽然业务不同,但是关于用户行为分析的方法和技术实现都是基本相同的。在此分享一下自己的一些心得。 一. 简介 用户行为分析主要关心的指标可以概括如下:哪个用户在什么时候做了什么操作在哪里做了什么操作,为什么要做这些操作,通过什么方式,用了多长时间等问题,总结出来就是WHO,WHEN,WHERE,WHAT, 用户通过什么方式访问的系统,web,APP,小程序等 HOW TIME,用户访问每个模块,浏览某个页面多长时间等 以上都是我们要获取的数据,获取到相关数据我们才能接着分析用户行为。 有了上面的思路,下面我们来说下实现的相关技术问题,如何落地用户行为分析。 a).首先是获取用户行为数据,目前比较多的方法有两种,一种是埋点,一种是无埋点(即全埋点)。 四.总结 本小节知识简单介绍了用户行为分析的大概流程,具体到分析方法还有很多,之后会说下埋点数据的设计和处理过程。

51230
  • 广告
    关闭

    开发者专享福利,1988元优惠券限量发放

    带你体验博客、网盘相册搭建部署、视频渲染、模型训练及语音、文字识别等热门场景。云服务器低至65元/年,GPU15元起

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    CSDN用户行为分析用户行为数据爬取

    爬虫随机从CSDN博客取得800条用户行为数据,包含用户名、原创博客数、评论数、浏览量,试着从博客数,评论数,浏览量三个方面分析csdn的博主们的形象。 浏览量 浏览量超过2w的有37%,超过10w的有27%,这数字开起来很大,但联想到有30%的用户博客数过50,所以平均下来,一篇博客应该有2000浏览量,这个可以再之后进行爬取数据做分析。 ? 拉取数据实现 存储格式 用户信息包括用户名,点击量,评论数,原创博客数,使用json文件存储。 关注和被关注用户列表用于做递归访问。 ? 注意,并不是所有的用户都有me.csdn.net页面,比如这个https://me.csdn.net/qq_41173121 将保存的json文件通过在线json转excel工具转成excel,进行统计画图分析

    70120

    在线学习行为分析建模及挖掘

    文章从数据挖掘与领域应用、学习行为行为分析、网络行为分析模型三个角度对在线学习行为可能的应用方向进行综述研究,探讨学习者的在线学习行为建模机制,建立了数据、机制、结果三层次模型,并从网络挖掘的角度对学习数据进行模式分类与解析 在网络安全领域,王攀等(2008)针对Web用户行为分析面临的无规范、智能性差等问题,提出了基于动态行为轮廓库(DBP)的行为分析模型;李军等(2008)建立了新的基于流的统计分析模型,从网络异常行为预警的角度 ,实时监测和发现网络异常,检测和发现网络中的可疑代码;潘蕾等(2011)提出了通过分析用户使用行为获得用户行为模式,并判定其行为倾向、发现异常行为的主动模型。 因此,本研究建模的总体目标为:以学习分析需求为导向,以理解和优化学习为目标,自底向上对在线学习行为过程进行建模分析;遵循问题解决流程模式,自底向上将模型分为数据、机制、结果三部分(见图1):数据层呈现学习者可能产生的数据源与数据库 基于上述技术建模分析完成后,可以利用可视化技术和工具对结果进行呈现。 上述挖掘模式将在线学习行为可能产生的数据进行归类。

    2.5K60

    淘宝APP用户行为分析

    淘宝APP的功能日益复杂,但都离不开最基本的收藏、购物车和购买功能,本文利用sql对淘宝用户行为数据进行分析,通过用户行为分析业务问题。 一. 提出问题 本次分析的目的是想通过对淘宝用户行为数据分析,为以下问题提供解释和改进建议: 1.分析用户使用APP过程中的常见电商分析指标,确定各个环节的流失率,找到需要改进的环节 2.研究用户在不同时间尺度下的行为规律 1.基于AARRR漏斗模型分析用户行为 本文通过常用的电商数据分析指标,采用AARRR漏斗模型拆解用户进入APP后的每一步行为。 构建模型 1.分析用户行为的漏斗模型 利用AARRR模型分析用户行为,此处数据主要涉及用户刺激和购买转化的环节,通过用户从浏览到最终购买整个过程的流失情况,包括浏览、收藏、加入购物车和购买环节,得到一个月内的各项指标如下 2.不同时间尺度下用户行为模式分析 分别以月、周和日为单位分析用户购买行为,找出用户活跃规律。

    64820

    淘宝APP用户行为分析

    淘宝APP的功能日益复杂,但都离不开最基本的收藏、购物车和购买功能,本文利用sql对淘宝用户行为数据进行分析,通过用户行为分析业务问题。 一. 提出问题 本次分析的目的是想通过对淘宝用户行为数据分析,为以下问题提供解释和改进建议: 1.分析用户使用APP过程中的常见电商分析指标,确定各个环节的流失率,找到需要改进的环节 2.研究用户在不同时间尺度下的行为规律 1.基于AARRR漏斗模型分析用户行为 本文通过常用的电商数据分析指标,采用AARRR漏斗模型拆解用户进入APP后的每一步行为。 构建模型 1.分析用户行为的漏斗模型 利用AARRR模型分析用户行为,此处数据主要涉及用户刺激和购买转化的环节,通过用户从浏览到最终购买整个过程的流失情况,包括浏览、收藏、加入购物车和购买环节,得到一个月内的各项指标如下 2.不同时间尺度下用户行为模式分析 分别以月、周和日为单位分析用户购买行为,找出用户活跃规律。

    1.4K40

    用户画像行为分析流程

    构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识。 业务经营分析以及竞争分析,影响企业发展战略 构建流程 数据收集 数据收集大致分为网络行为数据、服务内行为数据、用户内容偏好数据、用户交易数据这四类。 、品牌偏好等 用户交易数据(交易类服务):贡献率、客单价、连带率、回头率、流失率等 当然,收集到的数据不会是100%准确的,都具有不确定性,这就需要在后面的阶段中建模来再判断,比如某用户在性别一栏填的男 还得一提的是,储存用户行为数据时最好同时储存下发生该行为的场景,以便更好地进行数据分析行为建模 该阶段是对上阶段收集到数据的处理,进行行为建模,以抽象出用户的标签,这个阶段注重的应是大概率事件,通过数学算法模型尽可能地排除用户的偶然行为

    1.6K80

    用户画像行为分析流程

    构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识。 业务经营分析以及竞争分析,影响企业发展战略 构建流程 数据收集 数据收集大致分为网络行为数据、服务内行为数据、用户内容偏好数据、用户交易数据这四类。 、品牌偏好等 用户交易数据(交易类服务):贡献率、客单价、连带率、回头率、流失率等 当然,收集到的数据不会是100%准确的,都具有不确定性,这就需要在后面的阶段中建模来再判断,比如某用户在性别一栏填的男 还得一提的是,储存用户行为数据时最好同时储存下发生该行为的场景,以便更好地进行数据分析行为建模 该阶段是对上阶段收集到数据的处理,进行行为建模,以抽象出用户的标签,这个阶段注重的应是大概率事件,通过数学算法模型尽可能地排除用户的偶然行为

    2.8K6855

    淘宝APP用户行为分析

    淘宝APP的功能日益复杂,但都离不开最基本的收藏、购物车和购买功能,本文利用sql对淘宝用户行为数据进行分析,通过用户行为分析业务问题。 一. 提出问题 本次分析的目的是想通过对淘宝用户行为数据分析,为以下问题提供解释和改进建议: 1.分析用户使用APP过程中的常见电商分析指标,确定各个环节的流失率,找到需要改进的环节 2.研究用户在不同时间尺度下的行为规律 1.基于AARRR漏斗模型分析用户行为 本文通过常用的电商数据分析指标,采用AARRR漏斗模型拆解用户进入APP后的每一步行为。 构建模型 1.分析用户行为的漏斗模型 利用AARRR模型分析用户行为,此处数据主要涉及用户刺激和购买转化的环节,通过用户从浏览到最终购买整个过程的流失情况,包括浏览、收藏、加入购物车和购买环节,得到一个月内的各项指标如下 2.不同时间尺度下用户行为模式分析 分别以月、周和日为单位分析用户购买行为,找出用户活跃规律。

    81320

    关于用户路径分析模型_spark用户行为分析

    在场景对应到具体的技术方案设计上,我们将访问数据根据session划分,挖掘出用户频繁访问的路径;功能上允许用户即时查看所选节点相关路径,支持用户自定义设置路径的起点或终点,并支持按照业务新增用户/活跃用户查看不同目标人群在同一条行为路径上的转化结果分析 不同特征的用户行为路径有什么差异? 通过一个实际的业务场景我们可以看下路径分析模型是如何解决此类问题的; 【业务场景】 分析“活跃用户”到达目标落地页[小视频页]的主要行为路径(日数据量为十亿级,要求计算结果产出时间1s左右) 【用户操作 2.1 路径分析 路径分析是常用的数据挖据方法之一, 主要用于分析用户在使用产品时的路径分布情况,挖掘出用户的频繁访问路径。 假设有用户a和用户b,a用户当天发生的行为事件分别为 E1, E2, E3… , 对应的页面分别为P1, P2, P3… ,事件发生的时间分别为T1, T2, T3… ,选定的session间隔为tg。

    8330

    深入理解推荐系统:超长用户行为序列建模

    用户行为长度可以达到上万,而且可以像DIN那样,对于不同的候选商品从用户行为里查找有效的信息建模用户的特殊兴趣。 一种是考虑效果DIN和DIEN,优点:考虑候选广告和用户行为的关系(Attention等),使用与候选item相关的行为建模用户对于当前候选的兴趣,即可以建模用户对不同候选item的兴趣;缺点:用户行为不能太长 UIC&MIMN解耦了兴趣建模和在线CTR预估的计算,建模用户兴趣时模型无法获取和使用待预估的候选item的信息。 ? 这说明如果想更准确地建模超长的用户行为,对候选item的利用是很有必要的。 SIM相比其他使用长期用户行为的模型提升比较多,分析原因是因为MIMN和Avg-pooling Long DIN将长期行为建模成固定长度的向量,难以获取用户多样的兴趣使用时间信息也有一定的帮助。 进一步分析SIM是否在用户长期兴趣建模上表现更好?能否推荐更多与用户长期兴趣相关的item? ? d_category定义为距离用户上一次点击同类目的item的天数。

    2.6K20

    8篇论文详解用户历史行为序列建模方法

    本文汇总了8篇推荐系统中对用户历史行为序列建模的方法,包括DIN、DIEN等经典模型。 基础的UIC只能对信息进行简单的存储,没有考虑用户历史行为的演化关系,因此本文提出在UIC基础上增加MIU模块对用户历史行为进行建模。 5 总结 本文我们介绍了8篇推荐系统或广告系统中的用户历史行为建模方法。 同时,用户历史行为序列的长度也在影响其效果,引入越长的历史行为序列,意味着包含的用户信息更多,在合理的建模方法下可以取得更优的效果。 除了使用用户本身的行为序列进行建模外,使用一些相似用户行为序列辅助学习,也会进一步取得不错的效果。 END

    4620

    淘宝用户行为数据分析

    Part 1.分析背景 本数据集包含了2017年11月25日至2017年12月3日之间,有行为的约一百万随机用户的所有行为行为包括点击、购买、加购、喜欢)。 怎么根据不同RFM类型用户制定用户留存策略? Part 4. 分析目的及思路 因为数据记录了访问行为、购物车行为、收藏行为、购买行为,所以我们可以检测到用户在哪一环节流失。 我们采用多维度拆解分析方法对问题进行拆解,用假设检验分析法、对比分析法和RFM模型分析法具体分析用户使用流程及具体业务指标中的问题。 从业务指标进行分析: ? 从业务流程分析用户点击商品详细到最终购买,中间会有一系列步骤。 ? Part 5. 数据清洗 5.1 选择子集 本数据集中各字段均有分析价值,不需要进行本项操作。 构建模型 6.1 行为数据指标: select 行为类型,count(*) as 行为类型 from UserBehavior GROUP BY 行为类型 ?

    67951

    如何分析用户复购行为

    记录了公司产品的详细信息 “销售网点表”记录了公司的销售网点 销售订单表、产品明细表、销售网点表字段之间的关系如下 销售订单表和产品明细表通过“产品”字段关联,销售订单表和销售网点通过“交易网点”关联 【问题】分析品牌在 2019.5-2020.4期间的复购率 【解题思路】 1.明确业务指标 要分析的是“在2019.5-2020.4期间的复购率”,复购率是业务分析中经常用到的指标。 复购率高,说明产品的忠诚用户越多,这时公司需要把更多的精力和资源投入到吸引、引导在用户的复购上。 复购率低说明产品的忠诚用户少,需要把资源和精力用在提升用户的转化率上。 也就是日期不同的,再次购买的用户算是复购。 =b.交易日期 把前面步骤里的SQL组合到一起,最终得到分析复购率的SQL: select if(count(distinct (a.顾客ID))>1,1,0)/ count(distinct

    24920

    实战|淘宝用户行为分析案例

    一、项目背景 本数据报告以淘宝app平台为数据集,通过行业的指标对淘宝用户行为进行分析,从而探索淘宝用户行为模式,具体指标包括:日PV和日UV分析,付费率分析,复购行为分析,漏斗流失分析用户价值RFM 六、用户行为分析 (1)pv和uv分析 PV(访问量):即Page View, 具体是指网站的是页面浏览量或者点击量,页面被刷新一次就计算一次。 从图2可以看出,加入购物车这一用户行为的pv总量高于收藏的总量,因此在后续漏斗流失分析中,用户类型3应该在2之前分析。 八、复购情况分析 In [26]: #复购情况,即两天以上有购买行为,一天多次购买算一次#复购率=有复购行为用户数/有购买行为用户总数 date_rebuy=data_user[data_user.behavior_type 九、漏斗流失分析 漏斗分析是一套流程式数据分析,它能够科学反映用户行为状态以及从起点到终点各阶段用户转化率情况的重要分析模型。

    59741

    推荐系统之用户行为分析

    最近读了项亮博士的《推荐系统实践》,在此对用户行为分析这章做一个总结。 用户行为介绍 基于用户行为的推荐,在学术界名为协同过滤算法。 用户行为在个性化推荐系统中一般分两种——显性反馈行为(explicit feedback)和隐性反馈 行为(implicit feedback)。 显性反馈行为包括用户明确表示对物品喜好的行为:主要方式就是评分和喜欢/不喜欢; 隐性反馈行为指的是那些不能明确反应用户喜好的行为:最具代表性的隐性反馈行为就是页面浏览行为; ? 用户行为分析 先定义两个变量: 用户活跃度:用户产生过行为的物品总数 物品流行度:对物品产生过行为用户总数 而用户活跃度和物品流行度的人数都符合Power Law,也称为长尾分布: ? 用户活跃度和物品流行度的关系是:用户越活跃,越倾向于浏览冷门的物品。 仅仅基于用户行为数据设计的推荐算法一般称为协同过滤算法。

    1.7K40

    用户行为分析之数据采集

    用户行为简介 用户行为分析主要关心的指标可以概括如下:哪个用户在什么时候做了什么操作在哪里做了什么操作,为什么要做这些操作,通过什么方式,用了多长时间等问题,总结出来就是WHO,WHEN,WHERE 用户通过什么方式访问的系统,web,APP,小程序等 HOW TIME,用户访问每个模块,浏览某个页面多长时间等 以上都是我们要获取的数据,获取到相关数据我们才能接着分析用户行为用户行为数据采集 ? 埋点 埋点一般分为无埋点和代码埋点。 ,这也是就难受的一点 有了上面的思路,下面我们来说下实现的相关技术问题,如何落地用户行为分析。 and sink to the channel a1.sources.source1.channels = c1 a1.sinks.k1.channel = c1 数据采集到HDFS后,下篇我们分享一下用户行为之数据分析

    72731

    推荐系统之用户行为分析

    用户行为介绍 基于用户行为的推荐,在学术界名为协同过滤算法。 协同过滤就是指用户可以齐心协力,通过不断地和网站互动,使 自己的推荐列表能够不断过滤掉自己不感兴趣的物品,从而越来越满足自己的需求。 用户行为在个性化推荐系统中一般分两种——显性反馈行为(explicit feedback)和隐性反馈 行为(implicit feedback)。 显性反馈行为包括用户明确表示对物品喜好的行为:主要方式就是评分和喜欢/不喜欢; 隐性反馈行为指的是那些不能明确反应用户喜好的行为:最具代表性的隐性反馈行为就是页面浏览行为; ? 用户行为分析 先定义两个变量: 用户活跃度:用户产生过行为的物品总数 物品流行度:对物品产生过行为用户总数 而用户活跃度和物品流行度的人数都符合Power Law,也称为长尾分布: 。 用户活跃度和物品流行度的关系是:用户越活跃,越倾向于浏览冷门的物品。 仅仅基于用户行为数据设计的推荐算法一般称为协同过滤算法。

    88890

    从采集到建模:某二手主机游戏交易论坛用户行为分析

    两轮面试过后,面试官——也是我加入百度后的直属Leader——打电话给我,说他们对我的经历很满意,但是需要我给他们一份能体现建模能力的报告。 …《二手主机游戏交易论坛用户行为分析》 为啥选这个呢? 这要说到我待在国企的最后半年,那时候我一个月忙三天,剩下基本没事干,因此泡在论坛上倒卖了一段时间的二手游戏…… 咳咳……总之,目标就确定了:分析某二手主机游戏交易论坛上的帖子,从中得出其用户行为的描述, 其次,我们用发帖用户作为视角,输出一份用户的统计表格,里边包含每个用户的发帖数、求购次数、出售次数、交换次数、每一类主机/游戏的行为次数等等,作为后续搭建用户分析模型之用。表格大概长这个样子: ? Step 7 & 8:选择变量 & 选择算法 因为我要研究的是这些用户与二手交易相关的行为,因此初步选择变量为发帖数量、微软主机拥有台数、索尼主机拥有台数、任天堂主机拥有台数。

    67960

    用户行为分析模型——路径分析(一)

    在网页或者营销渠道中,用户行为模型有比较多,基于渠道的,笔者觉得有: 渠道类型 渠道重要性 渠道跳转与流失 单渠道,多节点 路径分析,漏斗功能 多渠道 归因分析 这里多渠道指的是,单渠道多节点的场景比较好理解 不同特征的用户行为路径有什么差异? 某个页面,引导用户去往哪个页面,对转化率最有利? 假设有用户a和用户b,a用户当天发生的行为事件分别为 E1, E2, E3… , 对应的页面分别为P1, P2, P3… ,事件发生的时间分别为T1, T2, T3… ,选定的session间隔为tg。 分别是四个不同页面,整个路径下的转化 计算A-B-C路径中B-C的转化率:(A-B-C这条路径的pv/sv)÷(所有节点深度为3的路径中二级页面是B的路径的pv/sv和) 3 获取路径的多级页面 vivo:用户行为分析模型实践 参考文献 vivo:用户行为分析模型实践(一)—— 路径分析模型 路径分析:如何将用户的网站行为轨迹可视化呈现? 漏斗分析:你可能低估了它的复杂度(逻辑细节及产品化)

    32020

    相关产品

    • 智能数据分析

      智能数据分析

      智能数据分析( IDA)基于安全、低成本、高可靠、可弹性的云端大数据架构,帮助企业客户实现从数据采集、建模、挖掘、效果分析、用户标签画像到自动化营销等全场景的数据服务,快速实现数据驱动业务增长的目标。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券