学习
实践
活动
专区
工具
TVP
写文章

【二】分布式训练---参数服务器训练(飞桨paddle1.8)

1.参数服务器训练简介 参数服务器训练是分布式训练领域普遍采用的编程架构,主要解决以下两类问题: 模型参数过大:单机内存空间不足,需要采用分布式存储。 参数服务器训练示例 对于参数服务器训练来说,训练前也需要完成环境准备、数据处理、模型设计工作。其中,数据处理和模型设计与单机训练完全相同,可以直接拿来使用。 4.2 数据处理 参数服务器训练的数据处理与单机训练完全相同,这里不再重复赘述。 4.3 模型设计 参数服务器训练的模型设计与单机训练完全相同,这里不再重复赘述。 参数服务器训练数据切分 飞桨的参数服务器训练目前主要是数据并行模式。 6.参数服务器训练的性能调优 优化的目的是在给定数据集上,以最快速度训练得到最优的效果。参数服务器训练的性能调优分为速度提升和效果提升。 6.1速度提升 参数服务器训练涉及的训练如下图所示。

16920

多视图聚类-使用GPU云服务器训练

一、为什么使用云服务器? 1、云服务器比其它传统的服务器安全、稳定。 2、云服务器灵活性好,价格低 3、云服务器操作配置简单 4、发布网站让别人访问 二、训练使用GPU云服务器 1、win+r打开cmd a.png Snipaste_2022-04-20_19 三、使用的训练设置 在使用服务器训练深度学习的模型时,常常由于用电脑训练CNN时遇到了性能瓶颈(显存不够),就会发出错误报告,这样训练也就不会正常开始,当然也可以调整自己的batch_size的大小,从而对自己电脑的 这个时候就可以使用GPU云服务器进行训练,毕竟云服务器上的显卡内容比自己电脑上的要大很多。训练也快,训练出来的模型效果也好,很理想化。 下面是使用GPU云服务器进行的训练截图。 Snipaste_2022-04-20_19-29-42.png 可以看到时间会很短,比自己电脑训练所用的时间的一半不到,所以使用云服务器还是一个不错的选择。

18040
  • 广告
    关闭

    云服务器应用教程

    手把手教您从零开始搭建网站/Minecraft游戏服务器/图床/网盘、部署应用、开发测试、GPU渲染训练等,畅享云端新生活。

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用腾讯云GPU云服务器训练ViT过程记录

    腾讯云提供的云GPU服务器性能强大, 费用合理, 所以笔者试用腾讯云GPU云服务器完成了ViT模型的离线训练, 并记录了试用过程, 以供参考。 在预训练状态下, 该结果对应的ground truth可以使用掩码的某个patch作为替代。 下面具体介绍使用腾讯云GPU服务器训练ViT模型的过程。 [Ping值测试] 以下是笔者选择的服务器配置详细信息: [服务器配置详细信息] 提交并结账后, 可以通过站内信查看密码并登录服务器: [购买成功] [站内信] 为了方便后续的连接, 可以在~/.ssh /train\_val\_tfrecord" 模型训练结果 为了便于后续训练分布式大规模模型, 我们在分布式训练框架Colossal-AI的基础上进行模型训练和开发。 (我们也可以通过增加模型的参数量, 如修改模型为vit\_small\_patch16\_224, 来进一步尝试优化模型效果): [训练结果] 总结 本文记录了试用腾讯云GPU服务器训练一个ViT图像分类模型的过程

    62600

    Facebook开源AI训练服务器,可帮助盲人识别图片

    这些使用英伟达的 GPU 作为处理核心的服务器连接起来,形成一个巨大的 AI 训练网络,这使得 Facebook 的产品能够进行物体和面部识别、实时文本翻译、以及理解并描述图片和视频中的内容。 Facebook,表示与 Big Sur 相比,Big Basin 能够训练比之前的规模大 30% 的机器学习模型。 根据在标准神经网络模型上的测试,Big Basin 还可以通过压缩训练 AI 系统需要的大量数据集,将训练速度提升一倍。 Facebook 已经宣布开源服务器的设计。 Facebook 此前参加并帮助建立了 Open Compute Project ,这个项目的主要目的是共享数据中心的硬件和软件设计,并相互协作,因此开源服务器的设计方案是 Facebook 的一贯做法 对于 Facebook 来说,开源 AI 系统的训练工具是为了推动其 AI 系统能力的进一步发展。

    54460

    训练模型还要训练吗_多模态预训练模型

    若使用已保存好的镜像reid_mgn:v1,在本机上可按如下操作训练 # 1.进入已保存环境的镜像(reid_mgn:v1(8.48G)、pytorch/pytorch:1.0.1-cuda10.0 (6.37G)) nvidia-docker run -it –rm -v /home/lc-deep/sdr:/home/personReID reid_mgn:v1 /bin/bash (服务器 deep/share2/docker_data:/home -v /home/deep/sxue:/home/personReID ufoym/deepo:testv1 /bin/bash (75服务器 (在原终端继续进行,注:demo.sh是已改好参数的) sh demo1.sh 补充: 训练前需要修改的文件及代码 1.demo.sh文件 修改data路径(把你的数据集路径添加到 –datadir)、 :需将数据集文件名由原始的Market-1501-****改为和代码匹配的Market1501 2.trainer.py 修改train、test中的epoch 3.main.py 如果是单GPU训练

    11020

    Tesseract:训练

    资源文件的训练 如果刚才按照建议进行过了尝试,应该能发现哪些是必要的文件,它们是: unicharset inttemp pffmtable normproto shapetable 训练的过程就是为了从训练数据中产生这些东西 数据准备 首先要准备好训练用的文本数据,根据不同的应用场景,对文本数据的要求会不一样。 项目网站上说到,每个字在训练用的数据文件中一般应该有 10 个样本,低频字也至少要有 5 个,高频的应该在 20 个以上。 不过就我目前进行的中文训练情况来看,每个字一个样本得到的结果也没有明显的差异,读者可以自行试验。 图像与BOX文件生成 有了数据文件后,我们需要用这些数据文件中的文字来生成图像,用这些图像去进行训练

    1K10

    使用GPU服务器搭建Pytorch并训练YOLO v3数据集

    这个系列包括三篇文章: 第一节 GPU服务器的环境配置 第二节 YOLO v3的数据集制作 第三节 训练数据集并使用 wandb 监控训练过程,验证训练效果 注意,本文适合有一定Linux基础但对 Linux 第一节 GPU服务器的环境配置 1.1 服务器即及镜像的选取 如下,推荐使用竞价实例,更便宜,V100(32G)最适合深度学习,P40(24G)其次,T4(16G)最差 image.png 同时镜像市场有很多配置好环境的可以选择 如果勾选了自动配置驱动,连接服务器后可以看见带有cuda/gpu等字样的进程,请耐心等待,直到 nvidia-smi 及 nvcc- V命令有输出才安装完成。 ,就可以使用Pytorch 进行训练了。很多大佬后面应该都会,所以这篇就不放了,下一篇再给小白详细讲。

    64430

    具有EC2自动训练的无服务器TensorFlow工作流程

    本文将逐步介绍如何使数据管理和预测保持无服务器状态,但将训练工作加载到临时EC2实例。这种实例创建模式将基于为在云中运行具有成本效益的超参数优化而开发的一种模式。 ? 对于数据存储,我们将在DynamoDB中创建两个表: data —将保留带标签的输入数据进行训练 model —存储训练工作中的元数据和指标 环境设定 初始化 由于项目将与Node Lambda文件和Python 通常role,该部分将替换为iamRoleStatements允许无服务器与其自己的整体IAM角色合并的自定义策略的部分。 创建的最终资源是自定义IAM角色,该功能将由所有功能使用,并且无服务器文档提供了一个很好的起点模板。 完成上传新数据的功能后,现在将重点转移到Python训练部分。

    53510

    4.训练模型之准备训练数据

    终于要开始训练识别熊猫的模型了, 第一步是准备好训练数据,这里有三件事情要做: 收集一定数量的熊猫图片。 将图片中的熊猫用矩形框标注出来。 将原始图片和标注文件转换为TFRecord格式的文件。 收集熊猫图片倒不是太难,从谷歌和百度图片上收集 200 张熊猫的图片,应该足够训练一个可用的识别模型了。 最后需要将数据集切分为训练集合测试集,将图片文件打乱,然后按照 7:3 的比例进行切分: random.seed(42) random.shuffle(all_examples) 最后还需要一个 label map 文件,很简单,因为我们只有一种物体:熊猫 label_map.pbtxt: item { id: 1 name: 'panda' } 训练一个熊猫识别模型所需要的训练数据就准备完了 ,接下来开始在 GPU 主机上面开始训练

    1.2K80

    AI领域的预训练与自训练

    但谷歌最新的研究表明,在数据量足够的情况下,至少在目标检测任务上,采用自训练得到的预训练模型对检测结果的提升要显著优于监督预训练与无监督预训练模型。 01 使用监督学习获得预训练模型 作为实验,研究者首先在Imagenet上训练分类网络作为预训练模型,之后监督得到的预训练模型作为骨干网络在COCO数据集上进行训练。 不同数据增强模式下基线、监督式预训练、自训练式预训练下的目标检测结果对比 ? 不同数据增强模式下基线、监督式预训练、自训练式预训练下的目标检测结果对比 ? 统一实验条件下三种预监督方法对比 作为与监督预训练与无监督预训练的对比,对照实验表明使用自训练方法得到的预训练模型在各种数据增强模式,不同主任务训练集尺寸的情况下都能获得明显受益,且显著优于基线(不使用预训练模型 在语义分割方面,研究者也证明了自训练的预训练方式比监督式预训练可以达到更好的效果: ?

    1K10

    训练后性能反而变差,自训练要取代预训练了吗?

    训练适用不同规模数据集和不同强度增强数据的训练; 3、自训练并且可以看作对预训练的补充,联合预训练和自训练可以获得更大的增益。 2 研究动机 作者希望能解决以下问题: 预训练训练结果有多大程度的帮助?什么情况下使用预训练是无效的? 与预训练相比,我们可以使用自训练并获得相似或更好的结果吗? 如果自训练优于预训练(暂做这样的假设),那它在多大的程度上比预训练好? 在什么情况下自训练比预训练更好? 自训练的灵活性和可扩展性如何? 3、自监督预训练 vs 自训练 有监督的 ImageNet预训练会损害最大规模数据集和高强度数据增强下的训练效果。但是自监督的预训练呢? 使用相同的ImageNet数据集,ImageNet的预训练获得+ 2.6AP的增益,预训练+联合训练再获得+ 0.7AP的增益,而预训练+联合训练+自训练则获得+ 3.3AP的增益。 ?

    72510

    pycorrector框架训练

    训练 python train.py 训练过程截图: [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1l5xopBc-1593252818916)(. output: 由我起开始做 input: 由我起开始做 output: 由我开始做 PS: 如果训练数据太少(不足万条),深度模型拟合不足,会出现预测结果全为unk的情况,解决方法:增大训练样本集,使用下方提供的纠错熟语料 深度模型训练耗时长,有GPU尽量用GPU,加速训练,节省时间。 大家可以用中文维基(繁体转简体,pycorrector.utils.text_utils下有此功能)等语料数据训练通用的语言模型,或者也可以用专业领域语料训练更专用的语言模型。 kenlm语言模型训练工具的使用,请见博客:http://blog.csdn.net/mingzai624/article/details/79560063 附上训练语料<人民日报2014版熟语料>,包括

    1.6K20

    ACM训练计划

    可能上面的总结不是很全,还请大家提出和指正,而且由于ACM的题目中专门针对某个算法的题目可能比较少出现,所以上面的分类中的题有可能有多种解法或者是一些算法的综合,这都不会影响大家做题,希望练习的同学能够认真,扎实地训练 如果同学能在明年暑假前能掌握上面大部分算法,那你也基本上达到了训练的目的,到暑假的时候你就可以选择自己比较喜欢的方面进行加深和强化,而且同学们不要觉得看算法的证明是很麻烦的事,这可以加强你的思维能力,这在 (poj3096,poj3007) (2)较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706) 二.图算法: (1)差分约束系统的建立和求解. (poj3415,poj3294) 四.搜索 (1)较麻烦的搜索题目训练(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426) (2)广搜的状态优化:利用

    1K133

    模型训练技巧

    模型训练技巧 神经网络模型设计训练流程 图1-1 神经模型设计流程 当我们设计并训练好一个神经网络之后,需要在训练集上进行验证模型效果是否良好。 这一步的目的在于判断模型是否存在欠拟合;在确定已经在训练集上拟合的很好,就需要在测试集上进行验证,如果验证结果差就需要重新设计模型;如果效果一般,可能需要增加正则化,或者增加训练数据; 欠拟合处理策略 因此需要在训练误差和测试误差之间做一个权衡。 集成学习的做法大致是,从训练集中采样出多笔数据,分别去训练不同的模型(模型的结构可以不同)。用训练出的多个模型分别对测试集进行预测,将最终的结果进行平均(如图1-16所示)。 因此,在训练模型时,就相当于训练了多个模型。对于模型中的某个权重是,在不同的dropout的神经网络中是共享的。 图1-17 dropout训练过程 但是,在训练好之后,需要进行预测。

    16520

    关注

    腾讯云开发者公众号
    10元无门槛代金券
    洞察腾讯核心技术
    剖析业界实践案例
    腾讯云开发者公众号二维码

    相关产品

    • GPU 云服务器

      GPU 云服务器

      腾讯GPU 云服务器是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于深度学习训练、科学计算、图形图像处理、视频编解码等场景。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券