NIPS 2017 五大比赛全汇总,看看优胜的中国选手有哪些

AI 科技评论按,NIPS 2017 正在美国如火如荼召开,作为机器学习领域的顶级会议,今年的注册参会者超过 8000 人。

现场 Keynote、Oral 和 Sportlight 等优秀论文的宣讲一场接一场,AI 科技评论记者也在时刻关注。除了论文之外,今年有一个议程尤为瞩目,美国时间 12 月 8 日,大会现场将会有一个围绕 NIPS 2017 Competition Track(NIPS 2017 大赛)的 workshop。NIPS 2017 Competition Track 是今年新增的一项议程,主办方从 23 个比赛提案中选择了五个不同类型的数据驱动类比赛,覆盖领域广泛。

这场 workshop 将从早上八点持续到晚上七点半,比赛主办方和优胜选手会分别上台宣讲,其中有大家耳熟能详的 Ian Goodfellow、Yoshua Bengio 等人(作为比赛主办方)。

下面 AI 科技评论将为大家带来关于这五个比赛的详细信息。

The Conversational Intelligence Challenge(智力对话比赛)

该比赛为莫斯科物理技术学院(MIPT)、麦吉尔大学(McGill University)、蒙特利尔大学(University of Montreal)等机构的多位学者共同主办,主办方为选手提供的奖金为 1 万美元,Facebook 是比赛的白金赞助商。

据主办方介绍,「人机交流对话系统(聊天机器人、个人助理和语音控制界面等)在我们的日常生活中越来越普遍,这场比赛的初衷是想创造一个可以与人类进行智能对话的聊天机器人,他们希望能为开发下一代智能会话系统贡献出开放的数据集。」

比赛分为四个阶段——Qualification round(认证阶段)、Human Evaluation Round(评估阶段)、Tuning Round(调整阶段)、NIPS Round(NIPS 阶段)。在 Human Evaluation Round,每队选手至少需要评估 150 条对话,而在 Tuning Round,大家需要对自己的方案进行调整,训练模型。NIPS Round 中,则会对提交的会话系统进行评估。

从目前公开的排行榜上可以看到,中国选手中,来自香港理工大学和复旦大学的 PolyU 团队在NIPS Round 中取得第五名。

Personalized Medicine: Redefining Cancer Treatment(个性化医疗:重新定义癌症治疗)

此次比赛的参赛队伍共有 1386 支,第一名的奖金是 10000 美元,第二名是 3000 美元,第三名是 2000 美元。

该项比赛由 Sloan-Kettering 癌症中心 (MSKCC) 发起,在Kaggle上举办,目前关于比赛的讨论也有很多,大家要是对这项比赛有兴趣,可以点击https://www.kaggle.com/c/msk-redefining-cancer-treatment查看详情。目前中国选手也取得了不错的成绩,可以看到 kaggle 账户为 Li-Der 的中国选手取得了 Public Leaderboard 第一名,kaggle 账户为 Yang 的中国选手取得了 Private Leaderboard 第三名。

在比赛中,参赛选手需要开发基于临床证据 (文本) 的基因突变分类算法,基因突变可以划分为 9 类。即使对专家来说,解释临床证据也非常具有挑战性,因此想要成功对临床证据(文本)建模难度非常大。这类算法可以帮助人们解决癌症的复杂性,并且发现以前未知的基因突变,这些突变往往对癌细胞的生成起到重要作用。

Adversarial Attacks and Defences(对抗攻击防御比赛)

比赛的全名为 Non-targeted Adversarial Attack,简介是「Imperceptibly transform images in ways that fool classification models」,也就是说,需要以欺骗分类模型的方式将图片巧妙地移花接木。该比赛为谷歌大脑团队(Ian Goodfellow 等人)牵头主办,具体而言,分为三个竞赛项目:

Non-targeted Adversarial Attack,竞赛者所提交的系统需要对给定的图片进行处理,使得某个通用机器学习分类器无法识别。

Targeted Adversarial Attack,竞赛者所提交的系统需要对给定的图片进行处理,让某个通用机器学习分类器能成功识别图像属于特定类别。

Defense Against Adversarial Attack,竞赛者需要构建一个机器学习分类器,拥有足够的鲁棒性使之能正确鉴别对抗性的图像。

本次比赛共有 91 支队伍参赛,排行榜显示,来自清华大学的 TSAIL 团队(Yinpeng Dong, Tianyu Pang, Fangzhou Liao)占领 Leaderboard 榜首。

目前大多数现有的机器学习系统的鲁棒性很差,容易受对抗样本的影响,样本经过轻微修改后,可能就会让机器学习发生错误,这一比赛主要是为了加快研究机器学习分类器的对抗样本,提升其鲁棒性。

  • 发表于:
  • 原文链接:http://kuaibao.qq.com/s/20171209A0L7CV00?refer=cp_1026

扫码关注云+社区