人工智能需要什么样的PM

3+1能力模型:

产品能力

人工智能行业产品的问题一般很难直接评估,并且都是综合类问题,这使得人工智能的PM需要有极强的综合产品能力。需要有能从纷繁复杂的场景下快速定位核心问题的洞察力,有丰富的解决问题手段。除了这个问题之外,挖掘用户需求,满足需求这类只能算是基础能力罢了。

技术能力

这里有两个方向:

深入介入技术算法方向,能直接在这个层面理解并带来价值。

了解技术本质,理解技术边界,能观察行业发展方向,并在这个层面形成产品决策方案。

人工智能领域我们主要涉及到是算法模型和机器学习部分的技术内容。一些基础的机器学习知识,包括一般的模型评估和选择的方法,基本的应用模型如:线性模型、决策树、贝叶斯、隐马尔科夫模型、支持向量机这种比较常用的机器学习方案,以及目前大热的深度学习神经网络目前经常应用的DNN、CNN、RNN这类网络结构;根据自己的产品方向的差别,从了解机器学习技术的特点、算法模型应用的边界以及如何结合算法和训练特点形成产品方案、算法评估有效性等等都是人工智能PM需要额外关注的部分。

业务能力

深刻理解目前所处的行业应用本质、痛点和未来的发展方向,最好能有产业思维,有自己独到的行业理解。

人工智能行业目前还在快速发展过程中,支撑方案都没有太多成型,也没有很明确的平台基础,所以很多的产品决策需要对目前行业现状以及未来的技术发展方向有足够预判,在产品设计上有相应的布局。

另外产业思维可以帮助PM更好的理解上下游以及各自的用户诉求,有深刻的产业思维可以有效的在更高的层面做出有效的产品决策。

+1指的是管理能力

人工智能PM除了要在应用层面有所建树之外,对后端的运营/产品体系、组织的改造是非常重要的,而这需要对管理有深刻的理解的PM才能满足这方面的需求。我们现有的组织是建立在现有IT所能搭建的系统基础上,由于计算机技术的快速发展,提升的信息的管理和处理效率。而人工智能技术的发展本质是在现在有技术基础上增加了思考和学习的能力,计算机变得拥有判断能力,这使得组织分工势必跟着这个技术发展产生变化;特别是后端的智能产品,在这个方面的变化会更加明显,人员分工变化角色调整都是人工智能PM在做产品方案的时候需要仔细考量的。

如何转型

最后的最后,从现在开始如何向这个领域的PM转型?

洞察理解人工智能的行业本质。

找一个自己最切合的人工智能应用领域,找相关企业尝试自荐。

找些资料理解人工智能/机器学习的技术原理。

深刻的产品功底。

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180327G18W6900?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 yunjia_community@tencent.com 删除。

同媒体快讯

扫码关注云+社区

领取腾讯云代金券