首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【应用探索】聚合物固态电解质盘点:如何打造更安全、高效的固态电池?

全固态电池:相比液态电池,全固态电池取消原有电解液,选用聚合物/氧化物/硫化物体系作为固态电解质,以薄膜的形式分割正负极,从而替代隔膜的作用,其中聚合物性能上限较低,氧化物目前进展较快,硫化物未来潜力最大,负极从石墨体系升级到预锂化的硅基负极/锂金属负极,正极从高镍升级到了超高镍/镍锰酸锂/富锂锰基等,封装方式采用叠片+软包的方式,能量密度可达500Wh/kg。

电解质:氧化物目前进展最快,硫化物发展潜力最大

固态电解质是实现高安全性、能量密度、循环寿命性能的关键。根据电解质的种类,可分为氧化物、硫化物、聚合物三种路线。聚合物体系率先在欧洲商业化,优点为易于加工、生产工艺兼容、界面相容性好、机械性能好,缺点为常温离子电导率低、电化学窗口略窄、热稳定性和能量密度提升有限,因此制约了其大规模应用;氧化物综合性能最好,优点为电化学窗口宽、热稳定性好、机械强度高,缺点为难以加工、界面相容性差、电导率一般。

整体看,氧化物体系制备难度适中,较多新玩家和国内企业选取此路线,预计采用与聚合物复合的方式,在半固态电池中率先规模化装车;硫化物发展潜力最大,优点为电导率高、兼具强度与加工性能、界面相容性好,缺点为与正极材料兼容度差、对锂金属稳定性差、对氧气和水分敏感、存在潜在污染问题、生产工艺要求高。硫化物目前处于研发阶段,但后续发展潜力最大,工艺突破后,可能成为未来主流路线。

聚合物:电导率低,性能提升有限,最早商业化

聚合物易于合成和加工,率先实现商业化应用,但常温电导率低,整体性能提升有限,制约大规模应用与发展。聚合物固态电解质由高分子和锂盐络合形成,同时添加少量惰性填料。锂离子通过聚合物的分段运动,靠不断的络合与解络合而传递。

高分子主要选用聚氧化乙烯(PEO),对锂盐溶解性好,高温离子电导率高,但室温中结晶度高,离子电导率低,需进行改性处理,也可采用聚硅氧烷(PS)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯(PMMA)等材料,但也存在室温离子电导率低,质地较脆等问题,仍在研发改性阶段;锂盐主要采用LiTFSI,在聚合物中的良好分散能力与稳定性;惰性填料主要为氧化物,如TiO2、Al2O3、ZrO2、SiO2等,起到降低聚合物结晶度,改善机械性能等作用。聚合物由于易加工、工艺兼容等优势,率先在欧洲商业化,技术最为成熟,但其电导率低、电化学窗口窄,仅能和铁锂正极匹配,性能上限较低,工作时需持续加热至60℃,因此制约了其大规模应用,预计后续与无机固态电解质复合,通过结合两者优势,在应用端实现性能突破。

工艺:主流干法湿法技术各有优劣,预计双路线并行

聚合物电解质制造工艺包括干法工艺、湿法工艺和喷涂工艺,干法湿法工艺应用广泛,两种工艺均有利弊,为主流工艺,喷涂工艺研究进展缓慢,未获大规模应用。聚合物电解质主流使用用改性高聚合度聚环氧乙烷(PEO) ,主要采用多相催化聚合法合成,生成机理是配位阴离子聚合机理,一般由电池生产企业直接购置。

湿法工艺与锂离子电池涂覆工艺类似,首先将聚合物(PEO等)溶解在溶剂(NMP)中,再添加锂盐(LiTFSI)、增塑剂和惰性填料等制备成电解质浆料,溶液浇铸法或刮涂法将电解质浆料成膜,然后再加热干燥,使聚合物固化、溶剂挥发,制成聚合物电解质薄膜,根据载体不同,可分为正极支撑成膜与骨架支撑成膜方式;

干法工艺是将正极和电解质浆料高温熔化形成高粘度糊状物,并同时返混挤出叠加在正极集流体上,并通过卷压机压实,再将负极涂布后通过辊压法把多层电芯压实;

聚合物电解质工艺难点在于成膜均一性控制和与负极接触稳定性,干法湿法工艺各有优劣,后续预计双路线并行,喷涂工艺相关专利数量较少,在固态电解质领域未获大规模应用。

  • 发表于:
  • 原文链接https://page.om.qq.com/page/OorW1MESvqwnZeqoTp4dW-Qw0
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

相关快讯

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券