【写在前面】:微信最近更改了展示规则,只有在确认用户真正喜欢某个公众号后,才会推送该公号的内容…… 所以老铁们如果喜欢检验质控人,一定要到公众号页面,点右上角的···,然后选“设为星标”或者时不时点一下每篇文章末尾的“在看”,这样系统才会把我的文章及时放到你面前哈。
检测数据不同于数学中的数字,它不仅要反映检测对象的大小,而且还要反映其精确程度。因此,为了合理地取值和科学地计算,检测数据必须按照GB/T 8170-2008《数值修约规则与极限数值的表示和判定》及其它有关标准的要求进行处理。而在实际检测工作中,部分分析人员对记录数据、数值修约、有效数字位数确定和数值运算等仍然存在概念模糊不清的问题,所以本期内容对数值修约和检测数据处理的要点内容进行梳理,希望对大家有所帮助!
一
有效数字
有效数字是分析中具有实际意义的测定数值。它是由直接读取的准确数字和通过估读得到的可疑数字(最后一位)组成。例如:3.2438中的“8”和0.130中的“0”。有效数字的个数是有效位数,对于不同类型的测定数值其有效位数为:
二
数值修约规则
一般来说,分析工作者习惯采用“四舍五入”修约规则,不过在分析中逢五就进,必然会造成结果的系统偏高,误差偏大,为了避免这样的状况出现,尽量减少因修约而产生的误差,一般采用四舍六入五留双的修约规则:
三
运算修约规则
四
试验过程中数值记录
1. 称量实验
“精密称定”是指称取重量应准确至所取重量的千分之一;“称定”是指称取重量应准确至所取重量的百分之一,按照“精密称定”项原则进行修约;“称重”、“称取”一般准确到规定重量下一位;取“约XX”时,指取用量不超过规定量的(100±10)%;取“XX”时,参照修约规则。
2. 量取试验
以刻度为依据可读到最小刻度所在位并估读最小刻度之间。
例如:图中“1”记录为35.00cm,而不能记录35cm,图中“2”记录为35.40cm,图中“3”可记录为35.75cm。量取5mL的液体应采用5-10mL的量筒;量取5.0mL的液体应采用5-10mL的刻度管和5-10mL的移液管。容量瓶的定容应记录为定容至100.00mL。
3. 色谱实验
● 峰面积一般不做修约,按实际测定值进行记录,参与计算后按相关规定进行修约。
● 拖尾因子、分离度可修约至小数点后两位,理论塔板数一般修约至正整数。
● 保留时间不做修约。
● 工作站自动生成数值也可不做修约。
● 化合物含量应该比标准规定限度的有效位数多一位,根据实际情况以修约规则进行修约。并且至少保留一位有效数字。
● RSD按“只进不舍”进行修约。
● 色谱条件数值不得修约。
● 方法学验证项的数值应该比标准规定限度的有效位数多一位,根据实际情况以修约规则进行修约。并且至少保留一位有效数字。
五
数值修约的基础知识
1. 什么是有效数字呢?
(1)有效数字是指在分析和测量中所能得到的有实际意义的数字。测量结果是由有效数字组成的(前后定位用的“0”除外)。例如测量结果1.1080g,组成数字1、1、0、8、0都是实际测读到的,它们是表示试样质量大小的,因而都是有实际意义的。
(2)有效数字的前几位都是准确数字,只有最后一位是可疑数字。例如前述的1.1080, 前几位数字1、1、0、8都是称量读到的准确数字,而最后一位数字0则是在没有刻度的情况下估读出来的,是不准确的或者说可疑的。
(3)有效数字是处于表示测量结果的数值的不同数位上。所有有效数字所占有的数位个数,称为有效数字位数。例如数值3.5,有两个有效数字,占有个位、十分位两个数位,因而有效数字位数为两位;3.501有四个有效数字,占有个位、十分位、百分位等四个数位,因而是四位有效数字。
(4)测量结果的数字,其有效位数反映了测量结果的精确度,它直接与测量的精密度有关。这也是有效数字实际意义的体现,是非常重要的体现。例如前述例子中,若测量结果为1.1080g,则表示测量值的误差在10-4量级上,天平的精度为万分之一;若测量结果为1.108g,则表示测量值的误差在10-3量级上,天平的精度为千分之一。
2. 有效数字位数的确定原则
在确定有效数字位数时应遵循下列原则:
(1)数值中数字1~9都是有效数字。
(2)数字“0”在数值中所处的位置不同,起的作用也不同,可能是有效数字,也可能不是有效数字。判定如下:
●“0”在数字前,仅起定位作用,不是有效数字。例如0.0257中,“2”前面的两个“0”均非有效数字。0.123、0.0123、0.00123中“1”前面的“0”也均非有效数字。
● 数值末尾的“0”属于有效数字。例如0.5000中, “5”后面的三个“0”均为有效数字;0.50中, “5”后面的一个“0”也是有效数字。
● 数值中夹在数字中间的“0”是有效数字。例如数值1. 008中的两个“0”是均是有效数字;数值8. 01中间的“0”也是有效数字。
● 以“0”结尾的正整数,“0”是不是有效数字不确定,应根据测试结果的准确度确定。例如3600,后面的两个“0”如果不指明测量准确度就不能确定是不是有效数字。测量中遇到这种情况,最好根据实际测试结果的精确度确定有效数字的位数,有效数字用小数表示,把“0”用10的乘方表示。如将3600写成3.6×103表示此数有两位有效数字;写成3.60×103表示此数有三位有效数字;写成3.600×103表示此数有四位有效数字。
3. 修约间隔
修约间隔又称修约区间或化整间隔,系确定修约保留位数的一种方式。修约间隔一般以k×10n(k=1,2,5;n为整数)的形式表示,将同一k值的修约间隔,简称为“k”间隔。修约间隔的数值一经确定,修约值即应为该数值的整数倍。例如:指定修约间隔为0.1,修约值即应在0.1的整数倍中选取,相当于将数值修约到一位小数。
● 1.0239修约到0.01,为1.02
● 1.02÷0.01=102(倍)
4. 修约数位及确定修约位数的表达方式
修约时,拟将拟修约数的哪一位数位后部分按修约规则舍去,则该数位就是修约数位。数值修约时需要先明确修约数位,确定修约位数的表达方式如下:
(1)指明具体的修约间隔。如指明将某数按0.2(2×10-1)修约间隔修约、100(1×102)修约间隔修约等。
(2)指定将拟修约数修约至某数位的0.1、0.2或0.5个单位。
(3)指明“k”按间隔将拟修约数修约为几位有效数字,或修约至某数位。这时“1” 间隔可不必指明,但“2”间隔和“5”间隔必须指明。
5. 通用数值修约方法
(1)如果为修约间隔整数倍的一系列数中,只有一个数最接近于拟修约数,则该数就是修约数。例如将1.150001按0.1修约间隔进行修约。此时,与拟修约数1.150001邻近的为修约间隔整数倍的数有1.1和1.2(分别为修约间隔的11倍和12倍),然而只有1.2最接近于拟修约数,因此1.2就是修约数。
(2)如果为修约间隔整数培的一系列数中,有连续两个数同等接近于拟修约数,则这两个数中,为修约间隔偶数培的数就是修约数。例如,将1150按100修约间隔行修约。此时,与拟修约数1150邻近的为修约间隔整数倍的数有1100和1200(分别为修约间隔的11倍和12倍),这两个数同等接近于拟修约数,然而1200为修约间隔的偶数培(12倍),因此1200就是修约数。
(3)一个数据的修约只能进行一次,不能分次修约。
领取专属 10元无门槛券
私享最新 技术干货