HBase和Hive 的差别是什么,各自适用在什么场景中

Hbase和Hive在大数据架构中处在不同位置,Hbase主要解决实时数据查询问题,Hive主要解决数据处理和计算问题,一般是配合使用。

一、区别:

Hbase: Hadoop database 的简称,也就是基于Hadoop数据库,是一种NoSQL数据库,主要适用于海量明细数据(十亿、百亿)的随机实时查询,如日志明细、交易清单、轨迹行为等。

Hive:Hive是Hadoop数据仓库,严格来说,不是数据库,主要是让开发人员能够通过SQL来计算和处理HDFS上的结构化数据,适用于离线的批量数据计算。

通过元数据来描述Hdfs上的结构化文本数据,通俗点来说,就是定义一张表来描述HDFS上的结构化文本,包括各列数据名称,数据类型是什么等,方便我们处理数据,当前很多SQL ON Hadoop的计算引擎均用的是hive的元数据,如Spark SQL、Impala等;

基于第一点,通过SQL来处理和计算HDFS的数据,Hive会将SQL翻译为Mapreduce来处理数据;

二、关系

在大数据架构中,Hive和HBase是协作关系,数据流一般如下图:

通过ETL工具将数据源抽取到HDFS存储;

通过Hive清洗、处理和计算原始数据;

HIve清洗处理后的结果,如果是面向海量数据随机查询场景的可存入Hbase

数据应用从HBase查询数据;

大数据资料了解,请私信我!

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20180909A0GBN300?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 yunjia_community@tencent.com 删除。

扫码关注云+社区

领取腾讯云代金券