当小偷遇上人工智能……

AI识别小偷的肢体动作

传统的应对犯罪行为的模式,一般是在事后进行视频监控调取,然后再进行大海捞针般的寻找。而AI则可以提前预判,大大减少安全员的反应时间,让其早做准备,从而防止犯罪行为发生或缩短破案时间。

就在今年,日本某电信公司和某科技公司合作开发出了一款名为AI Guardsman的人工智能系统,用以及时发现商店中的小偷。通过商店摄像头对顾客的实时追踪,将顾客的一言一行与内置的已知可疑动作进行匹配,一旦发现有符合预定动作特征的行为,系统就会向手机上关联的App发送一条报警信息,提醒店员注意。并且据他们声称,该系统令店里的盗窃行为减少了四成左右。

该技术的理论想法固然是非常美好的但其面临的问题是:如何保证识别的准确率?

第一,小偷的动作是否都是固定的?

有的新手可能在偷盗的时候眼神闪闪烁烁,左顾右盼,动作不自然,这样AI自然可以轻易捕捉到;但对一些惯偷而言,随手拿个东西就是家常便饭。

是否有足够多的数据供AI来学习,来实现识别的精准呢?既然花了钱用AI来识别小偷,最终却只能抓几个小鱼小虾,未免有点太过于鸡肋。

第二,为了保证“不使一人漏网”,AI会否会扩大报警的动作范围?

比如说顾客拿了个东西看了半天,最终又放回去;或者店员补货登记的时候停留很久,是否会被认为即将进行偷盗?因为以目前的资料来看,其仅仅是对动作进行判断,而没有相应的“识人”方案。如果有一点点可疑就要发警报,店员这一天精神是得有多紧张啊。

从这个角度上来说,AI要通过姿势来预测犯罪行为的发生,就必须要在精准度上下一番苦功夫了。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20180913B1API500?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 yunjia_community@tencent.com 删除。

扫码关注云+社区

领取腾讯云代金券