ECCV 2018 亮点集锦:自动驾驶、新网络结构、新图像风格迁移思路

今年,ECCV 2018 的参会人员达到了史无前例的数量,计算机视觉领域的最新进展,也一如既往地在此一一亮相。如我们所料,本次会议的所有议程都聚焦于卷积神经网络(CNNs)的深度学习。

没有参会的小伙伴们,不妨通过这篇亮点集锦,来了解一下在 ECCV 2018 上亮相的一些颇吸引眼球的主题:

自动驾驶

Self-localization on-the-fly(《行驶途中的自我定位》)

ECCV 2018 的重点主题之一就是自动驾驶。你能与竞争得过LIDAR(http://t.cn/Ev0aW0v)吗? 你能基于视频对车辆进行 3D 物体检测和重建吗?查看一下 ECCV 中的一些挑战(http://t.cn/Ev6OFTd)。

挑战赛地址:http://apolloscape.auto/ECCV/challenge.html

CARLA: Democratizing Autonomous Driving Research(《CARLA: 让自动驾驶研究平民化》)

对于城市地区来说,自动驾驶有很高的安全性要求。你听过CARLA(http://t.cn/Rj4HSpO)仿真器吗?有了它,不需要实际上路也能训练你的自动驾驶算法。你可以在这里(http://t.cn/Ev0StUF)找到学习指导。

演示视频:https://www.youtube.com/watch?v=AaJekfFR1KQ

新型神经网络结构和方案

Convolutional Networks with Adaptive Computation Graphs(《带有自适应计算图的卷积网络》)

Anreas Veit 表示 CNNs 并不一定需要固定的前馈结构,而是提出了在ImageNet上的表现比ResNet更好的自适应网络拓扑结构。你可以在这里(http://t.cn/Ev0SnFU)阅读论文梗概。

论文查看地址:http://openaccess.thecvf.com/content_ECCV_2018/papers/Andreas_Veit_Convolutional_Networks_with_ECCV_2018_paper.pdf

Lifting Layers: Analysis and Application(《提升层:分析与应用》)

对于深度学习在图像分类和图像去噪中的应用来说,增加输入的维度为什么会有帮助呢?为什么还能训练得更快呢?

论文查看地址:http://openaccess.thecvf.com/content_ECCV_2018/papers/Michael_Moeller_Lifting_Layers_Analysis_ECCV_2018_paper.pdf

Jointly Discovering Visual Objects and Spoken Words from Raw Sensory Input(《从原始传感器输入中联合提取视觉目标与语言词汇》)

你知道神经网络能够用来发现音频-视觉语义的对应关系,从而让我们突出大家所提到的(图像中的)物体、视野或区域吗?

论文查看地址:http://openaccess.thecvf.com/content_ECCV_2018/papers/David_Harwath_Jointly_Discovering_Visual_ECCV_2018_paper.pdf

Learning Discriminative Video Representations Using Adversarial Perturbations(《通过对抗性扰动学习有判别力的视频表征》)

CNN 特征,史蒂费尔流形,黎曼共轭梯度体系——把这些艰深的东西全部汇到了一起。

论文查看地址:http://openaccess.thecvf.com/content_ECCV_2018/papers/Jue_Wang_Learning_Discriminative_Video_ECCV_2018_paper.pdf

图像魔法

Diverse Image-to-Image Translation via Disentangled Representations(《通过解耦表征的多样化图像到图像转换》)

我们怎样用指定的内容和属性生成一张新图片?

论文查看地址:http://openaccess.thecvf.com/content_ECCV_2018/papers/Hsin-Ying_Lee_Diverse_Image-to-Image_Translation_ECCV_2018_paper.pdf

Style-aware Content Loss for Real-time HD Style Transfer(《用于实时高清风格抓换的基于风格的内容损失》)

该论文的作者为图像的风格迁移问题打下了基础。他们为我们提供了一种能模仿不同历史艺术家的风格的——虚构的「绘画」。这些「绘画」都由 CNNs 产生自真实世界的图像,并且可以轻松骗过人类观者。这项工作甚至可以用来生成视频!

论文查看地址:http://openaccess.thecvf.com/content_ECCV_2018/papers/Artsiom_Sanakoyeu_A_Style-aware_Content_ECCV_2018_paper.pdf

Kochen mit Spaß!

现在有一个叫做Cookpad的移动 App!你可以用它来给美食拍照,之后,CNN 将会对食物进行鉴别,让这个 App 能够告诉你要准备什么材料,以及怎样自己动手做出这些食物。

论文查看地址:https://www.semanticscholar.org/paper/Deep-based-Ingredient-Recognition-for-Cooking-Chen-Ngo/23fd82c04852b74d655015ff0876e6c5defc6e61

计算机视觉大家庭还在蓬勃成长,绝妙的点子和应用也越来越多!

本文参考:https://blog.alookanalytics.com/2018/09/12/highlights-from-the-european-conference-on-computer-vision-2018/

  • 发表于:
  • 原文链接:https://kuaibao.qq.com/s/20180918A1IGCP00?refer=cp_1026
  • 腾讯「云+社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。

扫码关注云+社区

领取腾讯云代金券