首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

经典推荐:工业界深度推荐系统与CTR预估方向必读论文汇总

本文来自“深度推荐系统”专栏,这个系列将介绍在深度学习的强力驱动下,给推荐系统工业界所带来的最前沿的变化。本文主要根据Google推出的引领推荐系统与CTR预估工业界潮流至今的一大神作W&D[1],所总结出来的深度推荐系统与CTR预估工业界必读的论文汇总。

起初是因为在唐杰老师的微博上看到其学生整理的一个关于Bert论文高引用相关的图片(https://weibo.com/2126427211/I4cXHxIy4)。

一个伟大的学生做的一个BERT的论文以及它引用的文章之间的关系,相当于是一个针对论文Citation的Finding->Reasoning->Exploring的过程。感觉做得很酷,忍不住share出来了。。。他伟大地决定要写个算法自动搞定!

觉得这个整理思路不错,于是也照葫芦画瓢整理了一下推荐系统和CTR预估上工业界同样鼎鼎大名Google出品的W&D[1]论文相关高引用的论文汇总。其实主要是对近年来推荐系统和CTR预估工业界影响力较大的论文做一个简单的思路梳理,首先上图如下,圆圈内数字为论文被引用数量。

Collaborative Filtering

  • [WWW 17] Neural Collaborative Filtering
  • [SIGIR 18] Collaborative Memory Network for Recommendation Systems

Deep部分演进

  • [SIGIR 17] Neural Factorization Machines for Sparse Predictive Analytics
  • [IJCAI 17] Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks
  • [ECIR 16] Factorization-supported Neural Network
  • [TOIS 18] Product-Based Neural Networks for User Response Prediction over Multi-Field Categorical Data
  • [RecSys 19] FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction
  • [KDD 18] Deep Interest Network for Click-through Rate Prediction
  • [AAAI 19] Deep Interest Evolution Network for Click-Through Rate Prediction
  • [IJCAI 19] Deep Session Interest Network for Click-Through Rate Prediction
  • [CIKM 19] AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks

Wide部分演进

  • [IJCAI 17] DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
  • [KDD 17] Deep & Cross Network for Ad Click Predictions
  • [KDD 18] xDeepFM: Combining Explicit and Implicit Feature Interactions
  • for Recommender Systems
  • [WWW 19] Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction

强化学习

  • [WWW 17] DRN: A Deep Reinforcement Learning Framework for News Recommendation
  • [WSDM 19] Top-K Off-Policy Correction for a REINFORCE Recommender System
  • [IJCAI 19] Reinforcement Learning for Slate-based Recommender Systems: A Tractable Decomposition and Practical Methodology

知识图谱

  • [WWW 17] DKN: Deep Knowledge-Aware Network for News Recommendation
  • [CIKM 18] RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems

Embedding技术

  • [ICCCA 18] Item2Vec-Neural Item Embedding for Collaborative Filtering
  • [RecSys 16] Meta-Prod2Vec: Product Embeddings Using Side-Information for Recommendation
  • [KDD 18] Real-time Personalization using Embeddings for Search Ranking at Airbnb
  • [KDD 18] Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba
  • [WWW 19] NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization
  • [IJCAI 19] ProNE: Fast and Scalable Network Representation Learning

参考文献

[1] Wide & Deep Learning for Recommender Systems, DLRS 2016

本文授权转载自知乎专栏“深度推荐系统”。原文链接:https://zhuanlan.zhihu.com/p/73369087

  • 发表于:
  • 本文为 InfoQ 中文站特供稿件
  • 首发地址https://www.infoq.cn/article/akCyhVe6pTowJzhFfxIw
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券