折线图是排列在工作表的列或行中的数据可以绘制到折线图中。折线图可以显示随时间(根据常用比例设置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势。
导入所需库
import pandas as pdimport osimport matplotlib.pyplot as pltimport seaborn as snsplt.style.use('ggplot')import matplotlibmatplotlib.rcParams['font.sans-serif'] = ['SimHei']matplotlib.rcParams['axes.unicode_minus']=False
函数原型
seaborn.lineplot(x=None, y=None, hue=None, size=None, style=None, data=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, dashes=True, markers=None, style_order=None, units=None, estimator='mean', ci=95, n_boot=1000, sort=True, err_style='band', err_kws=None,legend='brief', ax=None, **kwargs)
导入数据
fmri = pd.read_csv('fmri.csv')fmri[:5]
以“timepoint"为x轴,以'signal"为y轴,绘制折线图。
sns.lineplot(x="timepoint", y="signal", data=fmri
以“timepoint"为x轴,以'signal"为y轴,以“region"为分类,以”event"区分显示图例,绘制折线图。
sns.lineplot(x="timepoint", y="signal",hue="region", style="event", data=fmri)
以“timepoint"为x轴,以'signal"为y轴,以“event"为分类且以”event"区分显示图例,设置数据点为圆点显示,绘制折线图。
sns.lineplot(x="timepoint", y="signal",hue="event", style="event", markers="o", data=fmri)
使用类似pandas自带的绘图方式绘制折线图
import numpy as np, pandas as pd; plt.close("all")index = pd.date_range("1 1 2000", periods=100, freq="m", name="date")data = np.random.randn(100, 4).cumsum(axis=0)wide_df = pd.DataFrame(data, index, ["a", "b", "c", "d"])ax = sns.lineplot(data=wide_df)
以上就是本期折线图内容,下期我们分享分类数据图seaborn.catplot的绘制方法。
领取专属 10元无门槛券
私享最新 技术干货