首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

进击的Kubernetes调度系统(三):支持批任务的Binpack Scheduling

前两篇文章《进击的Kubernetes调度系统 (一):Scheduling Framework》 和《进击的 Kubernetes 调度系统(二):支持批任务的 Coscheduling/Gang scheduling 》分别介绍了Kubernetes Scheduling Framework和如何通过扩展Scheduling Framework实现Coscheduling/Gang scheduling调度策略。当我们的批任务作业在集群里边运行起来之后,随后要关注的就是资源的利用率。特别是对于GPU卡的价格昂贵,不希望有资源的浪费。本文将介绍在批任务的调度过程中如何通过Binpack的方式,减少资源碎片,提升GPU的利用率。

为什么需要Binpack功能?

Kubernetes默认开启的资源调度策略是LeastRequestedPriority,消耗的资源最少的节点会优先被调度,使得整体集群的资源使用在所有节点之间分配地相对均匀。但是这种调度策略往往也会在单个节点上产生较多资源碎片。

下面拿一个简单的例子来说明这种问题。如下图所示,资源在节点之间平均使用,所以每个节点使用3个GPU卡,则两个节点各剩余1GPU的资源。这是有申请2GPU的新作业,提交到调度器,则因为无法提供足够的资源,导致调度失败。

下面拿一个简单的例子来说明这种问题。如下图所示,资源在节点之间平均使用,所以每个节点使用 3 个 GPU 卡,则两个节点各剩余 1GPU 的资源。这是有申请 2GPU 的新作业,提交到调度器,则因为无法提供足够的资源,导致调度失败。

如上这种情况情况,每个节点都有 1 个 GPU 卡空闲,可是又无法被利用,导致资源 GPU 这种昂贵的资源被浪费。如果使用的资源调度策略是 Binpack,优先将节点资源填满之后,再调度下一个节点,则上图所出现的资源碎片问题得到解决。申请 2GPU 的作业被正常调度到节点上,提升了集群的资源使用率。

实现方案

Binpack 实现已经抽象成 Kubernetes Scheduler Framework 的 Score 插件 RequestedToCapacityRatio,用于优选阶段给节点打分。将节点根据自己定义的配置进行打分。具体的实现可以分为两个部分,构建打分函数和打分.

构建打分函数

构建打分函数的过程比较容易理解,就是用户可以自己定义不同的利用率所对应的分值大小,以便影响调度的决策过程。

如果用户设定的对应方式如下所示,即如果资源利用率为 0 的时候,得分为 0 分,当资源利用率为 100 时,得分为 10 分,所以得到的资源利用率越高,得分越高,则这个行为是 Binpack 的资源分配方式。

用户也可以设置成利用率为 0 时,得分为 10 分,利用率为 100 时,得分为 0 分。这样意味着资源利用率越低,则得分越高,这种行为是 spreading 的资源分配方式。

用户除了 2 个点之外也可以新增更多的点,对应关系可以不是线性的关系,例如可以标识资源利用率为 50 时,得分为 8,则会将打分分割为两个区间: 0-50 和 50-100。

打分

用户可以自己定义在 Binpack 计算中所要参考的资源以及权重值,例如可以只是设定 GPU 和 CPU 的值和权重。

resourcetoweightmap: 
    "cpu": 1
    "nvidia.com/gpu": 1

然后在打分过程总,会通过计算 (pod.Request + node.Allocated)/node.Total 的结果得到对应资源的利用率,并且将利用率带入上文中所述的打分函数中,得到相应的分数。最后将所有的资源根据 weight 值,加权得到最终的分数。

Score = line(resource1_utilization) * weight1 + line(resource2_utilization) * weight2 ....) / (weight1 + weight2 ....)

Binpack 使用

配置方法

1、新建 /etc/kubernetes/scheduler-config.yaml, 用户可以自行配置其他的 priorities 策略。

复制代码

apiVersion: kubescheduler.config.k8s.io/v1alpha1
kind: KubeSchedulerConfiguration
leaderElection:
  leaderElect: false
clientConnection:
  kubeconfig: "REPLACE_ME_WITH_KUBE_CONFIG_PATH"
plugins:
  score:
    enabled:
    - name: RequestedToCapacityRatio
      weight: 100
    disabled:
    - name: LeastRequestedPriority
pluginConfig:
- name: RequestedToCapacityRatio
  args:
    functionshape:
      - utilization: 0
        score: 0
      - utilization: 100
        score: 100
    resourcetoweightmap: # 定义具体根据哪种资源类型进行 binpack 操作, 多种资源时可以设置 weight 来进行比重设置
      "cpu": 1
      "nvidia.com/gpu": 1

Demo 演示

接下来我们通过运行 Tensorflow 的分布式作业来进行演示,展示 Binpack 的效果,当前测试集群有 2 台 4 卡的 GPU 机器

1、通过 Kubeflow 的 arena 在已有的 Kubernetes 集群中部署 tf-operator

Arena 是基于 Kubernetes 的机器学习系统开源社区 Kubeflow 中的子项目之一。Arena 用命令行和 SDK 的形式支持了机器学习任务的主要生命周期管理(包括环境安装,数据准备,到模型开发,模型训练,模型预测等),有效提升了数据科学家工作效率。

git clone https://github.com/kubeflow/arena.git
kubectl create ns arena-system
kubectl create -f arena/kubernetes-artifacts/jobmon/jobmon-role.yaml
kubectl create -f arena/kubernetes-artifacts/tf-operator/tf-crd.yaml
kubectl create -f arena/kubernetes-artifacts/tf-operator/tf-operator.yaml

检查是否部署成功

$ kubectl  get pods -n arena-system
NAME                                READY   STATUS    RESTARTS   AGE
tf-job-dashboard-56cf48874f-gwlhv   1/1     Running   0          54s
tf-job-operator-66494d88fd-snm9m    1/1     Running   0          54s

2、用户向集群中提交 Tensorflow 分布式,作业含有 1 个 PS 和 4 个 Worker,每个 Worker 需要 1 个 GPU

apiVersion: "kubeflow.org/v1"
kind: "TFJob"
metadata:
  name: "tf-smoke-gpu"
spec:
  tfReplicaSpecs:
    PS:
      replicas: 1
      template:
        metadata:
          creationTimestamp: null
          labels:
            pod-group.scheduling.sigs.k8s.io/name: tf-smoke-gpu
            pod-group.scheduling.sigs.k8s.io/min-available: "5"
        spec:
          containers:
          - args:
            - python
            - tf_cnn_benchmarks.py
            - --batch_size=32
            - --model=resnet50
            - --variable_update=parameter_server
            - --flush_stdout=true
            - --num_gpus=1
            - --local_parameter_device=cpu
            - --device=cpu
            - --data_format=NHWC
            image: registry.cn-hangzhou.aliyuncs.com/kubeflow-images-public/tf-benchmarks-cpu:v20171202-bdab599-dirty-284af3
            name: tensorflow
            ports:
            - containerPort: 2222
              name: tfjob-port
            resources:
              limits:
                cpu: '1'
            workingDir: /opt/tf-benchmarks/scripts/tf_cnn_benchmarks
          restartPolicy: OnFailure
    Worker:
      replicas: 4
      template:
        metadata:
          creationTimestamp: null
          labels:
            pod-group.scheduling.sigs.k8s.io/name: tf-smoke-gpu
            pod-group.scheduling.sigs.k8s.io/min-available: "5"
        spec:
          containers:
          - args:
            - python
            - tf_cnn_benchmarks.py
            - --batch_size=32
            - --model=resnet50
            - --variable_update=parameter_server
            - --flush_stdout=true
            - --num_gpus=1
            - --local_parameter_device=cpu
            - --device=gpu
            - --data_format=NHWC
            image: registry.cn-hangzhou.aliyuncs.com/kubeflow-images-public/tf-benchmarks-gpu:v20171202-bdab599-dirty-284af3
            name: tensorflow
            ports:
            - containerPort: 2222
              name: tfjob-port
            resources:
              limits:
                nvidia.com/gpu: 1
            workingDir: /opt/tf-benchmarks/scripts/tf_cnn_benchmarks
          restartPolicy: OnFailure

3、当用户使用 Binpack 功能时,用户提交任务后,4 个 Worker 被调度到同一个 GPU 节点 cn-shanghai.192.168.0.129

$ kubectl get pods -o wide
NAME                    READY   STATUS    AGE   IP             NODE
tf-smoke-gpu-ps-0       1/1     Running    15s   172.20.0.210   cn-shanghai.192.168.0.129  
tf-smoke-gpu-worker-0   1/1     Running    17s   172.20.0.206   cn-shanghai.192.168.0.129   
tf-smoke-gpu-worker-1   1/1     Running    17s   172.20.0.207   cn-shanghai.192.168.0.129      
tf-smoke-gpu-worker-2   1/1     Running    17s   172.20.0.209   cn-shanghai.192.168.0.129
tf-smoke-gpu-worker-3   1/1     Running    17s   172.20.0.208   cn-shanghai.192.168.0.129     

4、当用户不使用 Binpack 功能时,用户提交任务后,4 个 Worker 被分配到 cn-shanghai.192.168.0.129 和 cn-shanghai.192.168.0.130 两个节点上,产生资源碎片

$ kubectl get pods -o wide
NAME                    READY   STATUS AGE   IP             NODE
tf-smoke-gpu-ps-0       1/1     Running    7s    172.20.1.72    cn-shanghai.192.168.0.130
tf-smoke-gpu-worker-0   1/1     Running    8s    172.20.0.214   cn-shanghai.192.168.0.129
tf-smoke-gpu-worker-1   1/1     Running    8s    172.20.1.70    cn-shanghai.192.168.0.130
tf-smoke-gpu-worker-2   1/1     Running    8s    172.20.0.215   cn-shanghai.192.168.0.129
tf-smoke-gpu-worker-3   1/1     Running    8s    172.20.1.71    cn-shanghai.192.168.0.130

后记

上文中我们介绍了如何利用 Kubernetes 原生的调度策略 RequestedToCapacityRatio 来支持 Binpack Scheduling 的功能,减少资源碎片,提升 GPU 的利用率。使用起来很简单,但是效果很明显。针对 GPU 的资源利用率的提升的课题,我们将在本系列接下来的文章中介绍如何在推理服务下,通过 GPU 共享调度的方法大大的提升 GPU 利用率。

  • 发表于:
  • 本文为 InfoQ 中文站特供稿件
  • 首发地址https://www.infoq.cn/article/jgxW8923kwDF2oixcFCJ
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券