暂无搜索历史
了解 AI 计算模式对 AI 芯片设计和优化方向至关重要。本文将会通过模型结构、压缩、轻量化和分布式几个内容,来深入了解 AI 算法的发展现状,引发关于 AI ...
在上一篇文章的介绍中,介绍了 Im2Col 技术,它通过将三维张量重新排列成矩阵形式,然后利用基于内存访问局部性的优化库如 GEMM(通用矩阵乘法库)加速计算。...
作为早期的 AI 框架,Caffe 中卷积的实现采用的是基于 Im2Col 的方法,至今仍是卷积重要的优化方法之一。
上一篇文章简单了解计算机中常用几种微分方式。本文将深入介绍 AI 框架离不开的核心功能:自动微分。
QNNPACK(Quantized Neural Networks PACKage 是 Marat Dukhan (Meta) 开发的专门用于量化神经网络计算的...
卷积是神经网络里面的核心计算之一,它是一种特殊的线性运算。而卷积神经网络(CNN)是针对图像领域任务提出的神经网络,其受猫的视觉系统启发,堆叠使用卷积层和池化层...
除了前面提到的算子替换和算子前移等内容,本文内容将深入探讨计算图的优化策略,我们将细致分析图优化的其他重要内容,如改变数据节点的数据类型或存储格式来提升模型性能...
上一篇文章主要回顾了计算图优化的各个组成部分,包括基础优化、扩展优化以及布局和内存优化。这些优化方式在预优化阶段、优化阶段和后优化阶段都有所应用,以提高计算效率...
模型转换涉及对模型的结构和参数进行重新表示。在进行模型转换时,通常需要理解模型的计算图结构,并根据目标格式的要求对其进行调整和转换,可能包括添加、删除或修改节点...
本文将会介绍昇思MindSpore的并行训练技术,以及如何通过张量重排布和自动微分简化并行策略搜索,实现高效大模型训练。
混合并行(HybridParallel)是一种用于分布式计算的高级策略,它结合了数据并行和模型并行的优势,以更高效地利用计算资源,解决深度学习中的大模型训练问题...
在大模型的训练中,单个设备往往无法满足计算和存储需求,因此需要借助分布式训练技术。其中,模型并行(Model Parallelism, MP)是一种重要的方法。...
上一篇文章内容介绍了通用的数据并行和分布式数据并行,主要是对神经网络模型的输入数据 mini-batch 进行分布式处理。并且讨论了同步数据并行和异步数据并行的...
数据并行是一种广泛应用于分布式 AI 系统中的技术,旨在通过将数据集划分为多个子集并在不同计算节点上并行处理这些子集,以提高计算效率和速度。在大规模机器学习和深...
分布式训练是一种模型训练模式,它将训练工作量分散到多个工作节点上,从而大大提高了训练速度和模型准确性。虽然分布式训练可用于任何类型的 AI 模型训练,但将其用于...
深度学习范式主要是通过发现经验数据中,错综复杂的结构进行学习。通过构建包含多个处理层的计算模型(网络模型),深度学习可以创建多个级别的抽象层来表示数据。例如,卷...
目前主流的 AI 框架都选择使用计算图来抽象神经网络计算表达,通过通用的数据结构(张量)来理解、表达和执行神经网络模型,通过计算图可以把 AI 系统化的问题形象...
从 TensorFlow、PyTorch,到 PaddlePaddle、MindSpore、MegEngine,主流的 AI 框架动静态图转换,经历了动静分离、...
计算图在数学上作为一个有向无环图(DAG,Directed Acyclic Graph),能够把神经网络模型的概念抽象出来作为同一描述,不过在计算机的编程中,会...
暂未填写公司和职称
暂未填写个人简介
暂未填写技能专长
暂未填写学校和专业
暂未填写个人网址
暂未填写所在城市