文档中心>腾讯混元大模型>OpenAI 兼容接口>混元 OpenAI 兼容接口相关调用示例

混元 OpenAI 兼容接口相关调用示例

最近更新时间:2025-07-22 10:20:01

我的收藏
混元 API 兼容了 OpenAI 的接口规范,这意味着您可以直接使用 OpenAI 官方提供的 SDK 来调用混元大模型。您仅需要将 base_urlapi_key 替换成混元的相关配置,不需要对应用做额外修改,即可无缝将您的应用切换到混元大模型。
base_url:https://api.hunyuan.cloud.tencent.com/v1
api_key:需在控制台 API KEY页面 进行创建,操作步骤请参考 API KEY 管理
接口请求地址完整路径:https://api.hunyuan.cloud.tencent.com/v1/chat/completions
第三方软件集成混元,您可参见 第三方软件集成混元指南

对话(chat completions)

cURL
Python
NodeJS
Golang
curl https://api.hunyuan.cloud.tencent.com/v1/chat/completions \\
-H "Content-Type: application/json" \\
-H "Authorization: Bearer $HUNYUAN_API_KEY" \\
-d '{
"model": "hunyuan-turbos-latest",
"messages": [
{
"role": "user",
"content": "Say this is a test."
}
],
"enable_enhancement": true
}'

import os
from openai import OpenAI

# 构造 client
client = OpenAI(
api_key=os.environ.get("HUNYUAN_API_KEY"), # 混元 APIKey
base_url="https://api.hunyuan.cloud.tencent.com/v1", # 混元 endpoint
)

completion = client.chat.completions.create(
model="hunyuan-turbos-latest",
messages=[
{
"role": "user",
"content": "Say this is a test."
}
],
extra_body={
"enable_enhancement": True, # <- 自定义参数
},
)
print(completion.choices[0].message.content)
import OpenAI from "openai";

// 构造 client
const client = new OpenAI({
apiKey: process.env['HUNYUAN_API_KEY'], // 混元 APIKey
baseURL: "https://api.hunyuan.cloud.tencent.com/v1", // 混元 endpoint
});

const completion = await client.chat.completions.create({
model: "hunyuan-turbos-latest",
messages: [
{
role: "user",
content: "Say this is a test.",
},
],
enable_enhancement: true, // <- 自定义参数
});
console.log(completion.choices[0].message.content);
import (
"context"
"os"

"github.com/openai/openai-go"
"github.com/openai/openai-go/option"
)

func main() {
// 构造 client
client := openai.NewClient(
option.WithAPIKey(os.Getenv("HUNYUAN_API_KEY")), // 混元 APIKey
option.WithBaseURL("https://api.hunyuan.cloud.tencent.com/v1/"), // 混元 endpoint
)

chatCompletion, err := client.Chat.Completions.New(context.TODO(),
openai.ChatCompletionNewParams{
Messages: []openai.ChatCompletionMessageParamUnion{
openai.UserMessage("Say this is a test"),
},
Model: "hunyuan-turbos-latest",
},
option.WithJSONSet("enable_enhancement", true), // <- 自定义参数
)

if err != nil {
panic(err.Error())
}

println(chatCompletion.Choices[0].Message.Content)
}

多轮对话(chat completions)

多轮对话是指携带上下文的对话,用户请求时需将之前所有对话历史(即多条 user 和 assistant )拼接好, 传递给混元/chat/completions接口,即可实现多轮对话
cURL
Python
NodeJS
Golang
curl --location 'https://api.hunyuan.cloud.tencent.com/v1/chat/completions' \\
-H "Content-Type: application/json" \\
-H "Authorization: Bearer $HUNYUAN_API_KEY" \\
--data '{
"model": "hunyuan-turbos-latest",
"messages": [
{
"role": "user",
"content": "What'\\''s the highest mountain in the world? Keep it short."
},
{
"role": "assistant",
"content": "Mount Everest."
},
{
"role": "user",
"content": "What is the second?"
}
],
"enable_enhancement": true
}'

import os
from openai import OpenAI

# 构造 client
client = OpenAI(
api_key=os.environ.get("HUNYUAN_API_KEY"), # 混元 APIKey
base_url="https://api.hunyuan.cloud.tencent.com/v1", # 混元 endpoint
)

completion = client.chat.completions.create(
model="hunyuan-turbos-latest",
messages=[
{
"role": "user",
"content": "What's the highest mountain in the world? Keep it short."
},
{
"role": "assistant",
"content": "Mount Everest."
},
{
"role": "user",
"content": "What is the second?"
}
],
extra_body={
"enable_enhancement": True, # <- 自定义参数
},
)
print(completion.choices[0].message.content)

import OpenAI from "openai";

// 构造 client
const client = new OpenAI({
apiKey: process.env['HUNYUAN_API_KEY'], // 混元 APIKey
baseURL: "https://api.hunyuan.cloud.tencent.com/v1", // 混元 endpoint
});

const completion = await client.chat.completions.create({
model: "hunyuan-turbos-latest",
messages: [
{
role: "user",
content: "What's the highest mountain in the world?",
},
{
role: "assistant",
content: "Mount Everest."
},
{
role: "user",
content: "What is the second?"
}
],
enable_enhancement: true, // <- 自定义参数
});
console.log(completion.choices[0].message.content);
import (
"context"

"github.com/openai/openai-go"
"github.com/openai/openai-go/option"
)

func main() {
// 构造 client
client := openai.NewClient(
option.WithAPIKey(os.Getenv("HUNYUAN_API_KEY")), // 混元 APIKey
option.WithBaseURL("https://api.hunyuan.cloud.tencent.com/v1/"), // 混元 endpoint
)

chatCompletion, err := client.Chat.Completions.New(context.TODO(),
openai.ChatCompletionNewParams{
Messages: []openai.ChatCompletionMessageParamUnion{
openai.UserMessage("What's the highest mountain in the world? Keep it short."),
openai.AssistantMessage("Mount Everest."),
openai.UserMessage("What is the second?"),
},
Model: "hunyuan-turbos-latest",
},
option.WithJSONSet("enable_enhancement", true), // <- 自定义参数
)

if err != nil {
panic(err.Error())
}

println(chatCompletion.Choices[0].Message.Content)
}

图生文(如 hunyuan-vision)

图生文(Image-to-Text),是一种输入图片和文本,输出文本的大模型能力。混元的 vision 系列模型均可参考此文档,相关模型可参见 产品概述
ImageUrl.Url 支持图片链接图片 base64 两种方式。其中图片 base64 的格式为:""(注意:data:image/jpeg;base64之后的逗号需使用英文逗号)
下面是 jpeg 图片转 base64的各语言代码示例 (其他图片格式注意修改为对应的 MIME 类型,例如: image/png,image/webp,image/bmp 等):
Python
NodeJS
Golang
import base64

with open("1.jpeg", 'rb') as image_file:
encoded_image = base64.b64encode(image_file.read())
print("data:image/jpeg;base64,"+encoded_image.decode('utf-8'))
const fs = require('fs');
const data = fs.readFileSync('1.jpeg');
const encodedImage = data.toString('base64');
const base64Image = `data:image/jpeg;base64,${encodedImage}`;
console.log(base64Image);

import (
"encoding/base64"
"fmt"
"io/ioutil"
)

func main() {
imageData, _ := ioutil.ReadFile("1.jpeg")
encodedImage := base64.StdEncoding.EncodeToString(imageData)
fmt.Println("data:image/jpeg;base64," + encodedImage)
}
cURL
Python
NodeJS
Golang
curl --location 'https://api.hunyuan.cloud.tencent.com/v1/chat/completions' \\
-H "Content-Type: application/json" \\
-H "Authorization: Bearer $HUNYUAN_API_KEY" \\
--data '{
"model": "hunyuan-vision",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What'\\''s in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://qcloudimg.tencent-cloud.cn/raw/42c198dbc0b57ae490e57f89aa01ec23.png"
}
}
]
}
]
}'

import os
from openai import OpenAI

# 构造 client
client = OpenAI(
api_key=os.environ.get("HUNYUAN_API_KEY"), # 混元 APIKey
base_url="https://api.hunyuan.cloud.tencent.com/v1", # 混元 endpoint
)

completion = client.chat.completions.create(
model="hunyuan-vision",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What's in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://qcloudimg.tencent-cloud.cn/raw/42c198dbc0b57ae490e57f89aa01ec23.png"
#"url": ""
}
}
]
},
],
)

print(completion.choices[0].message.content)
import OpenAI from "openai";

// 构造 client
const client = new OpenAI({
apiKey: process.env['HUNYUAN_API_KEY'], // 混元 APIKey
baseURL: "https://api.hunyuan.cloud.tencent.com/v1", // 混元 endpoint
});

const completion = await client.chat.completions.create({
model: "hunyuan-vision",

messages: [
{
role: 'user',
content: [
{
"type": "text",
"text": "What's in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://qcloudimg.tencent-cloud.cn/raw/42c198dbc0b57ae490e57f89aa01ec23.png"
//"url": ""
}
}
]
}
],
});
console.log(completion.choices[0].message.content);
import (
"context"

"github.com/openai/openai-go"
"github.com/openai/openai-go/option"
)

func main() {
// 构造 client
client := openai.NewClient(
option.WithAPIKey(os.Getenv("HUNYUAN_API_KEY")), // 混元 APIKey
option.WithBaseURL("https://api.hunyuan.cloud.tencent.com/v1/"), // 混元 endpoint
)

chatCompletion, err := client.Chat.Completions.New(context.Background(), openai.ChatCompletionNewParams{
Model: "hunyuan-vision",
Messages: []openai.ChatCompletionMessageParamUnion{
{
OfUser: &openai.ChatCompletionUserMessageParam{
Role: "user",
Content: openai.ChatCompletionUserMessageParamContentUnion{
OfArrayOfContentParts: []openai.ChatCompletionContentPartUnionParam{
{
OfText: &openai.ChatCompletionContentPartTextParam{
Type: "text",
Text: "What's in this image?",
},
},
{
OfImageURL: &openai.ChatCompletionContentPartImageParam{
Type: "image_url",
ImageURL: openai.ChatCompletionContentPartImageImageURLParam{
URL: "https://qcloudimg.tencent-cloud.cn/raw/42c198dbc0b57ae490e57f89aa01ec23.png",
},
},
},
},
},
},
},
},
})

if err != nil {
panic(err.Error())
}

println(chatCompletion.Choices[0].Message.Content)
}

Function Calling

function call 是指模型在回答用户问题时,调用外部函数或API来获得信息或与外部系统交互的能力。
function call 使用流程(以获取某地温度举例):
1. 定义函数 get_weather。
2. 第一次请求对话接口:传递用户问题和函数定义(方法名称、描述、参数列表),由模型选择合适的函数并填充函数的参数。
3. 第一次接收模型的响应:在客户侧调用函数获得结果(函数需要由客户的代码来调用,模型只会给出要调用的函数和参数而不会执行调用)。
4. 第二次请求对话接口:在第一次的请求基础上,附加上第一次的响应和函数调用的结果,放到多轮上下文中,再次请求模型。
5. 第二次接收模型的响应:模型生成最终结果。

第一次请求示例:
cURL
Python
NodeJS
Golang
curl --location 'https://api.hunyuan.cloud.tencent.com/v1/chat/completions' \\
-H "Content-Type: application/json" \\
-H "Authorization: Bearer $HUNYUAN_API_KEY" \\
--data '{
"model": "hunyuan-turbos-latest",
"messages": [
{
"role": "user",
"content": "What'\\''s the weather like in Paris today?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get current temperature for provided coordinates in celsius.",
"parameters": {
"type": "object",
"properties": {
"latitude": {
"type": "number"
},
"longitude": {
"type": "number"
}

},
"required": [
"latitude","longitude"
]
}
}
}
]
}'
import json
import os
import requests
from openai import OpenAI

def get_weather(latitude, longitude):
response = requests.get(f"https://api.open-meteo.com/v1/forecast?latitude={latitude}&longitude={longitude}&current=temperature_2m,wind_speed_10m&hourly=temperature_2m,relative_humidity_2m,wind_speed_10m")
data = response.json()
return data['current']['temperature_2m']

# 构造 client
client = OpenAI(
api_key=os.environ.get("HUNYUAN_API_KEY"), # 混元 APIKey
base_url="https://api.hunyuan.cloud.tencent.com/v1", # 混元 endpoint
)

tools = [{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get current temperature for provided coordinates in celsius.",
"parameters": {
"type": "object",
"properties": {
"latitude": {"type": "number"},
"longitude": {"type": "number"}
},
"required": ["latitude", "longitude"]
}
}
}]

messages = [{"role": "user", "content": "What's the weather like in Paris today?"}]

completion = client.chat.completions.create(
model="hunyuan-turbos-latest",
messages=messages,
tools=tools,
)

print(completion.to_json())
import { OpenAI } from "openai";

const client = new OpenAI({
apiKey: process.env['HUNYUAN_API_KEY'], // 混元 APIKey
baseURL: "https://api.hunyuan.cloud.tencent.com/v1", // 混元 endpoint
});

async function getWeather(latitude, longitude) {
const response = await fetch(`https://api.open-meteo.com/v1/forecast?latitude=${latitude}&longitude=${longitude}&current=temperature_2m,wind_speed_10m&hourly=temperature_2m,relative_humidity_2m,wind_speed_10m`);
const data = await response.json();
return data.current.temperature_2m;
}

const tools = [{
type: "function",
function: {
name: "get_weather",
description: "Get current temperature for provided coordinates in celsius.",
parameters: {
type: "object",
properties: {
latitude: { type: "number" },
longitude: { type: "number" }
},
required: ["latitude", "longitude"]
}
}
}];

const messages = [
{
role: "user",
content: "What's the weather like in Paris today?"
}
];

const completion = await client.chat.completions.create({
model: "hunyuan-turbos-latest",
messages,
tools
});

console.log(JSON.stringify(completion))
import (
"context"
"encoding/json"
"fmt"
"io/ioutil"
"net/http"

"github.com/openai/openai-go"
"github.com/openai/openai-go/option"
)

func main() {
// 构造 client
client := openai.NewClient(
option.WithAPIKey(os.Getenv("HUNYUAN_API_KEY")), // 混元 APIKey
option.WithBaseURL("https://api.hunyuan.cloud.tencent.com/v1/"), // 混元 endpoint
)

tools := []openai.ChatCompletionToolParam{
{
Type: "function",
Function: openai.FunctionDefinitionParam{
Name: "get_weather",
Description: openai.String("Get current temperature for provided coordinates in celsius."),
Parameters: openai.FunctionParameters{
"type": "object",
"properties": map[string]any{
"latitude": map[string]any{
"type": "number",
},
"longitude": map[string]any{
"type": "number",
},
},
"required": []string{"latitude", "longitude"},
},
},
},
}

messages := []openai.ChatCompletionMessageParamUnion{
openai.UserMessage("What's the weather like in Paris today?"),
}

chatCompletion, err := client.Chat.Completions.New(context.TODO(),
openai.ChatCompletionNewParams{
Model: "hunyuan-turbos-latest",
Messages: messages,
Tools: tools,
},
)
if err != nil {
panic(err.Error())
}

fmt.Println(chatCompletion.Choices[0].Message.ToolCalls)
}

// WeatherResponse 定义返回的天气数据结构体
type WeatherResponse struct {
Current struct {
Temperature float64 `json:"temperature_2m"`
} `json:"current"`
}

// WeatherArg 天气参数
type WeatherArg struct {
Latitude float64 `json:"latitude"`
Longitude float64 `json:"longitude"`
}

func getWeather(latitude, longitude float64) (float64, error) {
url := fmt.Sprintf("https://api.open-meteo.com/v1/forecast?latitude=%f&longitude=%f&current=temperature_2m,wind_speed_10m&hourly=temperature_2m,relative_humidity_2m,wind_speed_10m", latitude, longitude)

resp, err := http.Get(url)
if err != nil {
return 0, fmt.Errorf("failed to get weather data: %v", err)
}
defer resp.Body.Close()

body, err := ioutil.ReadAll(resp.Body)
if err != nil {
return 0, fmt.Errorf("failed to read response body: %v", err)
}

var weather WeatherResponse
err = json.Unmarshal(body, &weather)
if err != nil {
return 0, fmt.Errorf("failed to unmarshal response: %v", err)
}

return weather.Current.Temperature, nil
}
第一次响应示例:
JSON
{
"id": "cabe32d2b30dd30ac3d7aad02f235dd4",
"choices": [
{
"finish_reason": "tool_calls",
"index": 0,
"message": {
"content": "调用天气查询工具(get_weather)来获取巴黎的天气信息。\\n\\t\\n\\t用户想要知道今天巴黎的天气。我需要调用天气查询工具(get_weather)来获取巴黎的天气信息。",
"role": "assistant",
"tool_calls": [
{
"id": "call_cvdrgkk2c3mceb26d7sg",
"function": {
"arguments": "{\\"latitude\\":48.8566,\\"longitude\\":2.3522}",
"name": "get_weather"
},
"type": "function",
"index": 0
}
]
}
}
],
"created": 1742452818,
"model": "hunyuan-turbos-latest",
"object": "chat.completion",
"system_fingerprint": "",
"usage": {
"completion_tokens": 48,
"prompt_tokens": 22,
"total_tokens": 70
}
}
第二次请求示例:
cURL
Python
NodeJS
Golang
curl --location 'https://api.hunyuan.cloud.tencent.com/v1/chat/completions' \\
-H "Content-Type: application/json" \\
-H "Authorization: Bearer $HUNYUAN_API_KEY" \\
--data '{
"model": "hunyuan-turbos-latest",
"messages": [
{
"role": "user",
"content": "What'\\''s the weather like in Paris today?"
},
{
"role": "assistant",
"content": "调用天气查询工具(get_weather)来获取巴黎的天气信息。\\n\\t\\n\\t用户想要知道今天巴黎的天气。我需要调用天气查询工具(get_weather)来获取巴黎的天气信息。",
"tool_calls": [
{
"id": "call_cvdu67s2c3mafqgr1g6g",
"function": {
"arguments": "{\\"latitude\\":48.8566,\\"longitude\\":2.3522}",
"name": "get_weather"
},
"type": "function",
"index": 0
}
]
},
{
"role": "tool",
"tool_call_id": "call_cvdu67s2c3mafqgr1g6g",
"content": "11.7"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get current temperature for provided coordinates in celsius.",
"parameters": {
"type": "object",
"properties": {
"latitude": {
"type": "number"
},
"longitude": {
"type": "number"
}

},
"required": [
"latitude","longitude"
]
}
}
}
]
}'
import json
import os
import requests
from openai import OpenAI

def get_weather(latitude, longitude):
response = requests.get(f"https://api.open-meteo.com/v1/forecast?latitude={latitude}&longitude={longitude}&current=temperature_2m,wind_speed_10m&hourly=temperature_2m,relative_humidity_2m,wind_speed_10m")
data = response.json()
return data['current']['temperature_2m']

# 构造 client
client = OpenAI(
api_key=os.environ.get("HUNYUAN_API_KEY"), # 混元 APIKey
base_url="https://api.hunyuan.cloud.tencent.com/v1", # 混元 endpoint
)

tools = [{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get current temperature for provided coordinates in celsius.",
"parameters": {
"type": "object",
"properties": {
"latitude": {"type": "number"},
"longitude": {"type": "number"}
},
"required": ["latitude", "longitude"]
}
}
}]

messages = [{"role": "user", "content": "What's the weather like in Paris today?"}]

completion = client.chat.completions.create(
model="hunyuan-turbos-latest",
messages=messages,
tools=tools,
)

print(completion.to_json())

## 在第一次响应的基础上 第二次发送请求
tool_call = completion.choices[0].message.tool_calls[0]
args = json.loads(tool_call.function.arguments)

result = get_weather(args["latitude"], args["longitude"])

messages.append(completion.choices[0].message) # append model's function call message
messages.append({ # append result message
"role": "tool",
"tool_call_id": tool_call.id,
"content": str(result)
})

completion_2 = client.chat.completions.create(
model="hunyuan-turbos-latest",
messages=messages,
tools=tools,
)

print(completion_2.to_json())
import { OpenAI } from "openai";

const client = new OpenAI({
apiKey: process.env['HUNYUAN_API_KEY'], // 混元 APIKey
baseURL: "https://api.hunyuan.cloud.tencent.com/v1", // 混元 endpoint
});

async function getWeather(latitude, longitude) {
const response = await fetch(`https://api.open-meteo.com/v1/forecast?latitude=${latitude}&longitude=${longitude}&current=temperature_2m,wind_speed_10m&hourly=temperature_2m,relative_humidity_2m,wind_speed_10m`);
const data = await response.json();
return data.current.temperature_2m;
}

const tools = [{
type: "function",
function: {
name: "get_weather",
description: "Get current temperature for provided coordinates in celsius.",
parameters: {
type: "object",
properties: {
latitude: { type: "number" },
longitude: { type: "number" }
},
required: ["latitude", "longitude"]
}
}
}];

const messages = [
{
role: "user",
content: "What's the weather like in Paris today?"
}
];

const completion = await client.chat.completions.create({
model: "hunyuan-turbos-latest",
messages,
tools
});

console.log(JSON.stringify(completion))

// 在第一次响应的基础上 第二次发送请求
const toolCall = completion.choices[0].message.tool_calls[0];
const args = JSON.parse(toolCall.function.arguments);

const result = await getWeather(args.latitude, args.longitude);

messages.push(completion.choices[0].message); // append model's function call message
messages.push({ // append result message
role: "tool",
tool_call_id: toolCall.id,
content: result.toString()
});

const completion_2 = await client.chat.completions.create({
model: "hunyuan-turbos-latest",
messages,
tools
});

JSON.stringify(completion_2)
import (
"context"
"encoding/json"
"fmt"
"io/ioutil"
"net/http"

"github.com/openai/openai-go"
"github.com/openai/openai-go/option"
)

func main() {
// 构造 client
client := openai.NewClient(
option.WithAPIKey(os.Getenv("HUNYUAN_API_KEY")), // 混元 APIKey
option.WithBaseURL("https://api.hunyuan.cloud.tencent.com/v1/"), // 混元 endpoint
)

tools := []openai.ChatCompletionToolParam{
{
Type: "function",
Function: openai.FunctionDefinitionParam{
Name: "get_weather",
Description: openai.String("Get current temperature for provided coordinates in celsius."),
Parameters: openai.FunctionParameters{
"type": "object",
"properties": map[string]any{
"latitude": map[string]any{
"type": "number",
},
"longitude": map[string]any{
"type": "number",
},
},
"required": []string{"latitude", "longitude"},
},
},
},
}

messages := []openai.ChatCompletionMessageParamUnion{
openai.UserMessage("What's the weather like in Paris today?"),
}

chatCompletion, err := client.Chat.Completions.New(context.TODO(),
openai.ChatCompletionNewParams{
Model: "hunyuan-turbos-latest",
Messages: messages,
Tools: tools,
},
)
if err != nil {
panic(err.Error())
}

fmt.Println(chatCompletion.Choices[0].Message.ToolCalls)
// 在第一次响应的基础上 第二次发送请求
toolCall := chatCompletion.Choices[0].Message.ToolCalls[0]
var args WeatherArg
if err = json.Unmarshal([]byte(toolCall.Function.Arguments), &args); err != nil {
panic(err.Error())
}
result, err := getWeather(args.Latitude, args.Longitude)
if err != nil {
panic(err.Error())
}

messages = append(messages, openai.AssistantMessage(chatCompletion.Choices[0].Message.Content))
messages = append(messages, openai.ToolMessage(toolCall.ID, fmt.Sprintf("%f", result)))
chatCompletion2, err := client.Chat.Completions.New(context.TODO(),
openai.ChatCompletionNewParams{
Model: "hunyuan-turbos-latest",
Messages: messages,
Tools: tools,
},
)
if err != nil {
panic(err.Error())
}
fmt.Println(chatCompletion2.Choices[0].Message.Content)
}

// WeatherResponse 定义返回的天气数据结构体
type WeatherResponse struct {
Current struct {
Temperature float64 `json:"temperature_2m"`
} `json:"current"`
}

// WeatherArg 天气参数
type WeatherArg struct {
Latitude float64 `json:"latitude"`
Longitude float64 `json:"longitude"`
}

func getWeather(latitude, longitude float64) (float64, error) {
url := fmt.Sprintf("https://api.open-meteo.com/v1/forecast?latitude=%f&longitude=%f&current=temperature_2m,wind_speed_10m&hourly=temperature_2m,relative_humidity_2m,wind_speed_10m", latitude, longitude)

resp, err := http.Get(url)
if err != nil {
return 0, fmt.Errorf("failed to get weather data: %v", err)
}
defer resp.Body.Close()

body, err := ioutil.ReadAll(resp.Body)
if err != nil {
return 0, fmt.Errorf("failed to read response body: %v", err)
}

var weather WeatherResponse
err = json.Unmarshal(body, &weather)
if err != nil {
return 0, fmt.Errorf("failed to unmarshal response: %v", err)
}

return weather.Current.Temperature, nil
}
第二次响应示例:
JSON
{
"id": "b03283653e27bc78a9c095699cfbc123",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "The current temperature in Paris is 7.6°C.",
"role": "assistant"
}
}
],
"created": 1742453367,
"model": "hunyuan-turbos-latest",
"object": "chat.completion",
"system_fingerprint": "",
"usage": {
"completion_tokens": 24,
"prompt_tokens": 71,
"total_tokens": 95
},
"note": "以上内容为AI生成,不代表开发者立场,请勿删除或修改本标记"
}
之后可以继续进行对话。

OpenAI 兼容参数

参数名称
必选
类型
默认值
描述
model
string
模型名称,可选值参考 产品概述 中混元生文模型列表。
示例值:hunyuan-turbos-latest
messages
object[]
聊天上下文信息。相关字段可参考上文调用示例。
说明:
1. 长度最多为 40,按对话时间从旧到新在数组中排列。
2. message.role 可选值:system、user、assistant、 tool( function call 场景)。
3. messages 中 content 总长度不能超过模型输入长度上限(可参考 产品概述 文档),超过则会截断最前面的内容,只保留尾部内容。
stream
boolean
false
流式调用开关。
说明:
1. 未传值时默认为非流式调用(false)。
2. 流式调用时以 SSE 协议增量返回结果(返回值取 choices[n].delta 中的值,需要拼接增量数据才能获得完整结果)。
3. 非流式调用时:
调用方式与普通 HTTP 请求无异。
接口响应耗时较长,如需更低时延建议设置为 true。
只返回一次最终结果(返回值取 choices[n].message 中的值)。
示例值:false
max_tokens
integer
4096
限制一次请求中模型生成 completion 的最大 token 数。输入 token 和输出 token 的总长度受模型的上下文长度的限制。
seed
integer
说明:
1. 确保模型的输出是可复现的。
2. 取值区间为非0正整数,最大值10000。
3. 非必要不建议使用,不合理的取值会影响效果。
示例值:1
stop
string[]
自定义结束生成字符串。
调用 OpenAI 接口时,如果您指定了 stop 参数, 模型会停止在匹配到 stop 的内容之前。
在调用混元接口时,会停止在匹配到 stop 的内容之后。
说明:未来我们可能会修改此行为以便和 OpenAI 保持一致。但是目前有使用该参数的情况下,开发者需要注意该参数是否会对应用造成影响,以及未来该行为调整时带来的影响。
temperature
number
说明:
1. 影响模型输出多样性,模型已有默认参数,不传值时使用各模型推荐值,不推荐用户修改。
2. 取值区间为 [0.0, 2.0]。较高的数值会使输出更加多样化和不可预测,而较低的数值会使其更加集中和确定。
top_p
number
0
说明:
1. 影响输出文本的多样性。模型已有默认参数,不传值时使用各模型推荐值,不推荐用户修改。
2. 取值区间为 [0.0, 1.0]。取值越大,生成文本的多样性越强。
tools
object[]
可调用的工具列表,相关字段可参考上文调用示例。
tool_choice
object
工具使用选项,可选值包括 none、auto、custom。
说明:
1. 仅对 hunyuan-turbos、hunyuan-functioncall 模型生效。
2. none:不调用工具。
auto:模型自行选择生成回复或调用工具。
custom:强制模型调用指定的工具。
3. 未设置时,默认值为 auto。
示例值:auto
stream_options
object
流式输出相关选项。只有在 stream 参数为 true 时,才可设置此参数。


混元自定义参数

参数名称
必选
类型
默认值
描述
citation
boolean
false
搜索引文角标开关。
说明:
1. 配合 enable_enhancement 和 search_info 参数使用。打开后,回答中命中搜索的结果会在片段后增加角标标志,对应 search_info 列表中的链接。
2. false:开关关闭;true:开关打开。
3. 未传值时默认开关关闭(false)。
enable_enhancement
boolean
false
功能增强(如搜索)开关。
说明:
1. hunyuan-lite 无功能增强(如搜索)能力,该参数对 hunyuan-lite 版本不生效。
2. 未传值时默认关闭开关。
3. 关闭时将直接由主模型生成回复内容,可以降低响应时延(对于流式输出时的首字时延尤为明显)。但在少数场景里,回复效果可能会下降。
4. 安全审核能力不属于功能增强范围,不受此字段影响。
5. 2025年04月20日 00:00:00起,由默认开启状态转为默认关闭状态。
enable_multimedia
boolean
false
多媒体开关。
详细介绍请阅读 多媒体介绍 中的说明。
说明:
1. 该参数目前仅对白名单内用户生效,如您想体验该功能请 联系我们
2. 该参数仅在功能增强(如搜索)开关开启(enable_enhancement=true)并且极速版搜索开关关闭(enable_speed_search=false)时生效。
3. hunyuan-lite 无多媒体能力,该参数对 hunyuan-lite 版本不生效。
4. 未传值时默认关闭。
5. 开启并搜索到对应的多媒体信息时,会输出对应的多媒体地址,可以定制个性化的图文消息。
enable_recommended_questions
boolean
false
推荐问答开关。
说明:
1. 未传值时默认关闭。
2. 开启后,在返回值的最后一个包中会增加 recommended_questions 字段表示推荐问答, 最多返回3条。
force_search_enhancement
boolean
false
强制搜索增强开关。
说明:
1. 未传值时默认关闭。
2. 开启后,将强制走AI搜索,当 AI 搜索结果为空时,由大模型回复兜底话术。
search_info
boolean
false
在值为 true 且命中搜索时,接口会返回 search_info。
enable_deep_search
boolean
false
是否开启深度研究该问题,默认是 false,在值为 true 且命中深度研究该问题时,会返回深度研究该问题信息。
enable_deep_read
boolean
false
文档深度阅读开关。
说明:
1. 未传值时默认关闭。
2. 开启后,需要根据文件的具体类型,指定不同的 prompt 模板。例如:核心速览、论文评价、主要内容、关键问题及回答等。
3. 当前仅支持单轮,单文档的深度阅读。


与OpenAI的差异

/v1/chat/completions

stop

调用 OpenAI 的接口时,如果您指定了 stop 参数, 模型会停止在匹配到 stop 的内容之前。
在调用混元接口时,会停止在匹配到 stop 的内容之后。
以原始输出 “我是一个AI助手可以帮助您在不同方面做出更好的决策,解答您的疑问并提供可靠的信息。”为例:
类型
stop 参数
模型输出
OpenAI
助手
我是一个 AI
混元
助手
我是一个 AI 助手
说明:
未来我们可能会修改此行为以便和 OpenAI 保持一致。
但是目前有使用该参数的情况下,开发者需要注意该参数是否会对应用造成影响,以及未来该行为调整时带来的影响。

stream_options

当流式返回且 stream_options.include_usage=true 时,会在最后一个数据块中返回 usage 信息。

/v1/embeddings

embedding 接口目前仅支持 inputmodel 参数,model 当前固定为 hunyuan-embeddingdimensions 固定为 1024。
说明:
我们将努力保证混元与 OpenAI 的兼容性,但是仍然会存在一些细微的差异(通常来说并不会破坏整体的兼容性或者影响功能的使用)。
本文档会列出混元兼容接口与 OpenAI 的差异,开发者可以自行检查并评估对您应用的影响。

Embedding

cURL
curl --location 'https://api.hunyuan.cloud.tencent.com/v1/embeddings' \\
-H 'Content-Type: application/json' \\
-H 'Authorization: Bearer $HUNYUAN_API_KEY' \\
--data '{
"model": "hunyuan-embedding",
"input": "你好"
}'
输出示例:
{
"object": "list",
"data": [
{
"index": 0,
"embedding": [
-0.0009261319064535201,
-0.01005222275853157,
......
],
"object": "embedding"
}
],
"model": "hunyuan-embedding",
"usage": {
"prompt_tokens": 3,
"total_tokens": 3
}
}