混元 API 兼容了 OpenAI 的接口规范,这意味着您可以直接使用 OpenAI 官方提供的 SDK 来调用混元大模型。您仅需要将
base_url
和 api_key
替换成混元的相关配置,不需要对应用做额外修改,即可无缝将您的应用切换到混元大模型。base_url:https://api.hunyuan.cloud.tencent.com/v1
api_key:需在控制台 API KEY页面 进行创建,操作步骤请参考 API KEY 管理。
接口请求地址完整路径:
https://api.hunyuan.cloud.tencent.com/v1/chat/completions
第三方软件集成混元,您可参见 第三方软件集成混元指南 。
对话(chat completions)
curl https://api.hunyuan.cloud.tencent.com/v1/chat/completions \\-H "Content-Type: application/json" \\-H "Authorization: Bearer $HUNYUAN_API_KEY" \\-d '{"model": "hunyuan-turbos-latest","messages": [{"role": "user","content": "Say this is a test."}],"enable_enhancement": true}'
import osfrom openai import OpenAI# 构造 clientclient = OpenAI(api_key=os.environ.get("HUNYUAN_API_KEY"), # 混元 APIKeybase_url="https://api.hunyuan.cloud.tencent.com/v1", # 混元 endpoint)completion = client.chat.completions.create(model="hunyuan-turbos-latest",messages=[{"role": "user","content": "Say this is a test."}],extra_body={"enable_enhancement": True, # <- 自定义参数},)print(completion.choices[0].message.content)
import OpenAI from "openai";// 构造 clientconst client = new OpenAI({apiKey: process.env['HUNYUAN_API_KEY'], // 混元 APIKeybaseURL: "https://api.hunyuan.cloud.tencent.com/v1", // 混元 endpoint});const completion = await client.chat.completions.create({model: "hunyuan-turbos-latest",messages: [{role: "user",content: "Say this is a test.",},],enable_enhancement: true, // <- 自定义参数});console.log(completion.choices[0].message.content);
import ("context""os""github.com/openai/openai-go""github.com/openai/openai-go/option")func main() {// 构造 clientclient := openai.NewClient(option.WithAPIKey(os.Getenv("HUNYUAN_API_KEY")), // 混元 APIKeyoption.WithBaseURL("https://api.hunyuan.cloud.tencent.com/v1/"), // 混元 endpoint)chatCompletion, err := client.Chat.Completions.New(context.TODO(),openai.ChatCompletionNewParams{Messages: []openai.ChatCompletionMessageParamUnion{openai.UserMessage("Say this is a test"),},Model: "hunyuan-turbos-latest",},option.WithJSONSet("enable_enhancement", true), // <- 自定义参数)if err != nil {panic(err.Error())}println(chatCompletion.Choices[0].Message.Content)}
多轮对话(chat completions)
多轮对话是指携带上下文的对话,用户请求时需将之前所有对话历史(即多条 user 和 assistant )拼接好, 传递给混元
/chat/completions
接口,即可实现多轮对话。curl --location 'https://api.hunyuan.cloud.tencent.com/v1/chat/completions' \\-H "Content-Type: application/json" \\-H "Authorization: Bearer $HUNYUAN_API_KEY" \\--data '{"model": "hunyuan-turbos-latest","messages": [{"role": "user","content": "What'\\''s the highest mountain in the world? Keep it short."},{"role": "assistant","content": "Mount Everest."},{"role": "user","content": "What is the second?"}],"enable_enhancement": true}'
import osfrom openai import OpenAI# 构造 clientclient = OpenAI(api_key=os.environ.get("HUNYUAN_API_KEY"), # 混元 APIKeybase_url="https://api.hunyuan.cloud.tencent.com/v1", # 混元 endpoint)completion = client.chat.completions.create(model="hunyuan-turbos-latest",messages=[{"role": "user","content": "What's the highest mountain in the world? Keep it short."},{"role": "assistant","content": "Mount Everest."},{"role": "user","content": "What is the second?"}],extra_body={"enable_enhancement": True, # <- 自定义参数},)print(completion.choices[0].message.content)
import OpenAI from "openai";// 构造 clientconst client = new OpenAI({apiKey: process.env['HUNYUAN_API_KEY'], // 混元 APIKeybaseURL: "https://api.hunyuan.cloud.tencent.com/v1", // 混元 endpoint});const completion = await client.chat.completions.create({model: "hunyuan-turbos-latest",messages: [{role: "user",content: "What's the highest mountain in the world?",},{role: "assistant",content: "Mount Everest."},{role: "user",content: "What is the second?"}],enable_enhancement: true, // <- 自定义参数});console.log(completion.choices[0].message.content);
import ("context""github.com/openai/openai-go""github.com/openai/openai-go/option")func main() {// 构造 clientclient := openai.NewClient(option.WithAPIKey(os.Getenv("HUNYUAN_API_KEY")), // 混元 APIKeyoption.WithBaseURL("https://api.hunyuan.cloud.tencent.com/v1/"), // 混元 endpoint)chatCompletion, err := client.Chat.Completions.New(context.TODO(),openai.ChatCompletionNewParams{Messages: []openai.ChatCompletionMessageParamUnion{openai.UserMessage("What's the highest mountain in the world? Keep it short."),openai.AssistantMessage("Mount Everest."),openai.UserMessage("What is the second?"),},Model: "hunyuan-turbos-latest",},option.WithJSONSet("enable_enhancement", true), // <- 自定义参数)if err != nil {panic(err.Error())}println(chatCompletion.Choices[0].Message.Content)}
图生文(如 hunyuan-vision)
ImageUrl.Url 支持图片链接和图片 base64 两种方式。其中图片 base64 的格式为:""(注意:data:image/jpeg;base64之后的逗号需使用英文逗号)
下面是 jpeg 图片转 base64的各语言代码示例 (其他图片格式注意修改为对应的 MIME 类型,例如: image/png,image/webp,image/bmp 等):
import base64with open("1.jpeg", 'rb') as image_file:encoded_image = base64.b64encode(image_file.read())print("data:image/jpeg;base64,"+encoded_image.decode('utf-8'))
const fs = require('fs');const data = fs.readFileSync('1.jpeg');const encodedImage = data.toString('base64');const base64Image = `data:image/jpeg;base64,${encodedImage}
`;console.log(base64Image);
import ("encoding/base64""fmt""io/ioutil")func main() {imageData, _ := ioutil.ReadFile("1.jpeg")encodedImage := base64.StdEncoding.EncodeToString(imageData)fmt.Println("data:image/jpeg;base64," + encodedImage)}
curl --location 'https://api.hunyuan.cloud.tencent.com/v1/chat/completions' \\-H "Content-Type: application/json" \\-H "Authorization: Bearer $HUNYUAN_API_KEY" \\--data '{"model": "hunyuan-vision","messages": [{"role": "user","content": [{"type": "text","text": "What'\\''s in this image?"},{"type": "image_url","image_url": {"url": "https://qcloudimg.tencent-cloud.cn/raw/42c198dbc0b57ae490e57f89aa01ec23.png"}}]}]}'
import osfrom openai import OpenAI# 构造 clientclient = OpenAI(api_key=os.environ.get("HUNYUAN_API_KEY"), # 混元 APIKeybase_url="https://api.hunyuan.cloud.tencent.com/v1", # 混元 endpoint)completion = client.chat.completions.create(model="hunyuan-vision",messages=[{"role": "user","content": [{"type": "text","text": "What's in this image?"},{"type": "image_url","image_url": {"url": "https://qcloudimg.tencent-cloud.cn/raw/42c198dbc0b57ae490e57f89aa01ec23.png"#"url": ""}}]},],)print(completion.choices[0].message.content)
import OpenAI from "openai";// 构造 clientconst client = new OpenAI({apiKey: process.env['HUNYUAN_API_KEY'], // 混元 APIKeybaseURL: "https://api.hunyuan.cloud.tencent.com/v1", // 混元 endpoint});const completion = await client.chat.completions.create({model: "hunyuan-vision",messages: [{role: 'user',content: [{"type": "text","text": "What's in this image?"},{"type": "image_url","image_url": {"url": "https://qcloudimg.tencent-cloud.cn/raw/42c198dbc0b57ae490e57f89aa01ec23.png"//"url": ""}}]}],});console.log(completion.choices[0].message.content);
import ("context""github.com/openai/openai-go""github.com/openai/openai-go/option")func main() {// 构造 clientclient := openai.NewClient(option.WithAPIKey(os.Getenv("HUNYUAN_API_KEY")), // 混元 APIKeyoption.WithBaseURL("https://api.hunyuan.cloud.tencent.com/v1/"), // 混元 endpoint)chatCompletion, err := client.Chat.Completions.New(context.Background(), openai.ChatCompletionNewParams{Model: "hunyuan-vision",Messages: []openai.ChatCompletionMessageParamUnion{{OfUser: &openai.ChatCompletionUserMessageParam{Role: "user",Content: openai.ChatCompletionUserMessageParamContentUnion{OfArrayOfContentParts: []openai.ChatCompletionContentPartUnionParam{{OfText: &openai.ChatCompletionContentPartTextParam{Type: "text",Text: "What's in this image?",},},{OfImageURL: &openai.ChatCompletionContentPartImageParam{Type: "image_url",ImageURL: openai.ChatCompletionContentPartImageImageURLParam{URL: "https://qcloudimg.tencent-cloud.cn/raw/42c198dbc0b57ae490e57f89aa01ec23.png",},},},},},},},},})if err != nil {panic(err.Error())}println(chatCompletion.Choices[0].Message.Content)}
Function Calling
function call 是指模型在回答用户问题时,调用外部函数或API来获得信息或与外部系统交互的能力。
function call 使用流程(以获取某地温度举例):
1. 定义函数 get_weather。
2. 第一次请求对话接口:传递用户问题和函数定义(方法名称、描述、参数列表),由模型选择合适的函数并填充函数的参数。
3. 第一次接收模型的响应:在客户侧调用函数获得结果(函数需要由客户的代码来调用,模型只会给出要调用的函数和参数而不会执行调用)。
4. 第二次请求对话接口:在第一次的请求基础上,附加上第一次的响应和函数调用的结果,放到多轮上下文中,再次请求模型。
5. 第二次接收模型的响应:模型生成最终结果。
第一次请求示例:
curl --location 'https://api.hunyuan.cloud.tencent.com/v1/chat/completions' \\-H "Content-Type: application/json" \\-H "Authorization: Bearer $HUNYUAN_API_KEY" \\--data '{"model": "hunyuan-turbos-latest","messages": [{"role": "user","content": "What'\\''s the weather like in Paris today?"}],"tools": [{"type": "function","function": {"name": "get_weather","description": "Get current temperature for provided coordinates in celsius.","parameters": {"type": "object","properties": {"latitude": {"type": "number"},"longitude": {"type": "number"}},"required": ["latitude","longitude"]}}}]}'
import jsonimport osimport requestsfrom openai import OpenAIdef get_weather(latitude, longitude):response = requests.get(f"https://api.open-meteo.com/v1/forecast?latitude={latitude}&longitude={longitude}¤t=temperature_2m,wind_speed_10m&hourly=temperature_2m,relative_humidity_2m,wind_speed_10m")data = response.json()return data['current']['temperature_2m']# 构造 clientclient = OpenAI(api_key=os.environ.get("HUNYUAN_API_KEY"), # 混元 APIKeybase_url="https://api.hunyuan.cloud.tencent.com/v1", # 混元 endpoint)tools = [{"type": "function","function": {"name": "get_weather","description": "Get current temperature for provided coordinates in celsius.","parameters": {"type": "object","properties": {"latitude": {"type": "number"},"longitude": {"type": "number"}},"required": ["latitude", "longitude"]}}}]messages = [{"role": "user", "content": "What's the weather like in Paris today?"}]completion = client.chat.completions.create(model="hunyuan-turbos-latest",messages=messages,tools=tools,)print(completion.to_json())
import { OpenAI } from "openai";const client = new OpenAI({apiKey: process.env['HUNYUAN_API_KEY'], // 混元 APIKeybaseURL: "https://api.hunyuan.cloud.tencent.com/v1", // 混元 endpoint});async function getWeather(latitude, longitude) {const response = await fetch(`https://api.open-meteo.com/v1/forecast?latitude=${latitude}&longitude=${longitude}¤t=temperature_2m,wind_speed_10m&hourly=temperature_2m,relative_humidity_2m,wind_speed_10m`);const data = await response.json();return data.current.temperature_2m;}const tools = [{type: "function",function: {name: "get_weather",description: "Get current temperature for provided coordinates in celsius.",parameters: {type: "object",properties: {latitude: { type: "number" },longitude: { type: "number" }},required: ["latitude", "longitude"]}}}];const messages = [{role: "user",content: "What's the weather like in Paris today?"}];const completion = await client.chat.completions.create({model: "hunyuan-turbos-latest",messages,tools});console.log(JSON.stringify(completion))
import ("context""encoding/json""fmt""io/ioutil""net/http""github.com/openai/openai-go""github.com/openai/openai-go/option")func main() {// 构造 clientclient := openai.NewClient(option.WithAPIKey(os.Getenv("HUNYUAN_API_KEY")), // 混元 APIKeyoption.WithBaseURL("https://api.hunyuan.cloud.tencent.com/v1/"), // 混元 endpoint)tools := []openai.ChatCompletionToolParam{{Type: "function",Function: openai.FunctionDefinitionParam{Name: "get_weather",Description: openai.String("Get current temperature for provided coordinates in celsius."),Parameters: openai.FunctionParameters{"type": "object","properties": map[string]any{"latitude": map[string]any{"type": "number",},"longitude": map[string]any{"type": "number",},},"required": []string{"latitude", "longitude"},},},},}messages := []openai.ChatCompletionMessageParamUnion{openai.UserMessage("What's the weather like in Paris today?"),}chatCompletion, err := client.Chat.Completions.New(context.TODO(),openai.ChatCompletionNewParams{Model: "hunyuan-turbos-latest",Messages: messages,Tools: tools,},)if err != nil {panic(err.Error())}fmt.Println(chatCompletion.Choices[0].Message.ToolCalls)}// WeatherResponse 定义返回的天气数据结构体type WeatherResponse struct {Current struct {Temperature float64 `json:"temperature_2m"`} `json:"current"`}// WeatherArg 天气参数type WeatherArg struct {Latitude float64 `json:"latitude"`Longitude float64 `json:"longitude"`}func getWeather(latitude, longitude float64) (float64, error) {url := fmt.Sprintf("https://api.open-meteo.com/v1/forecast?latitude=%f&longitude=%f¤t=temperature_2m,wind_speed_10m&hourly=temperature_2m,relative_humidity_2m,wind_speed_10m", latitude, longitude)resp, err := http.Get(url)if err != nil {return 0, fmt.Errorf("failed to get weather data: %v", err)}defer resp.Body.Close()body, err := ioutil.ReadAll(resp.Body)if err != nil {return 0, fmt.Errorf("failed to read response body: %v", err)}var weather WeatherResponseerr = json.Unmarshal(body, &weather)if err != nil {return 0, fmt.Errorf("failed to unmarshal response: %v", err)}return weather.Current.Temperature, nil}
第一次响应示例:
{"id": "cabe32d2b30dd30ac3d7aad02f235dd4","choices": [{"finish_reason": "tool_calls","index": 0,"message": {"content": "调用天气查询工具(get_weather)来获取巴黎的天气信息。\\n\\t\\n\\t用户想要知道今天巴黎的天气。我需要调用天气查询工具(get_weather)来获取巴黎的天气信息。","role": "assistant","tool_calls": [{"id": "call_cvdrgkk2c3mceb26d7sg","function": {"arguments": "{\\"latitude\\":48.8566,\\"longitude\\":2.3522}","name": "get_weather"},"type": "function","index": 0}]}}],"created": 1742452818,"model": "hunyuan-turbos-latest","object": "chat.completion","system_fingerprint": "","usage": {"completion_tokens": 48,"prompt_tokens": 22,"total_tokens": 70}}
第二次请求示例:
curl --location 'https://api.hunyuan.cloud.tencent.com/v1/chat/completions' \\-H "Content-Type: application/json" \\-H "Authorization: Bearer $HUNYUAN_API_KEY" \\--data '{"model": "hunyuan-turbos-latest","messages": [{"role": "user","content": "What'\\''s the weather like in Paris today?"},{"role": "assistant","content": "调用天气查询工具(get_weather)来获取巴黎的天气信息。\\n\\t\\n\\t用户想要知道今天巴黎的天气。我需要调用天气查询工具(get_weather)来获取巴黎的天气信息。","tool_calls": [{"id": "call_cvdu67s2c3mafqgr1g6g","function": {"arguments": "{\\"latitude\\":48.8566,\\"longitude\\":2.3522}","name": "get_weather"},"type": "function","index": 0}]},{"role": "tool","tool_call_id": "call_cvdu67s2c3mafqgr1g6g","content": "11.7"}],"tools": [{"type": "function","function": {"name": "get_weather","description": "Get current temperature for provided coordinates in celsius.","parameters": {"type": "object","properties": {"latitude": {"type": "number"},"longitude": {"type": "number"}},"required": ["latitude","longitude"]}}}]}'
import jsonimport osimport requestsfrom openai import OpenAIdef get_weather(latitude, longitude):response = requests.get(f"https://api.open-meteo.com/v1/forecast?latitude={latitude}&longitude={longitude}¤t=temperature_2m,wind_speed_10m&hourly=temperature_2m,relative_humidity_2m,wind_speed_10m")data = response.json()return data['current']['temperature_2m']# 构造 clientclient = OpenAI(api_key=os.environ.get("HUNYUAN_API_KEY"), # 混元 APIKeybase_url="https://api.hunyuan.cloud.tencent.com/v1", # 混元 endpoint)tools = [{"type": "function","function": {"name": "get_weather","description": "Get current temperature for provided coordinates in celsius.","parameters": {"type": "object","properties": {"latitude": {"type": "number"},"longitude": {"type": "number"}},"required": ["latitude", "longitude"]}}}]messages = [{"role": "user", "content": "What's the weather like in Paris today?"}]completion = client.chat.completions.create(model="hunyuan-turbos-latest",messages=messages,tools=tools,)print(completion.to_json())## 在第一次响应的基础上 第二次发送请求tool_call = completion.choices[0].message.tool_calls[0]args = json.loads(tool_call.function.arguments)result = get_weather(args["latitude"], args["longitude"])messages.append(completion.choices[0].message) # append model's function call messagemessages.append({ # append result message"role": "tool","tool_call_id": tool_call.id,"content": str(result)})completion_2 = client.chat.completions.create(model="hunyuan-turbos-latest",messages=messages,tools=tools,)print(completion_2.to_json())
import { OpenAI } from "openai";const client = new OpenAI({apiKey: process.env['HUNYUAN_API_KEY'], // 混元 APIKeybaseURL: "https://api.hunyuan.cloud.tencent.com/v1", // 混元 endpoint});async function getWeather(latitude, longitude) {const response = await fetch(`https://api.open-meteo.com/v1/forecast?latitude=${latitude}&longitude=${longitude}¤t=temperature_2m,wind_speed_10m&hourly=temperature_2m,relative_humidity_2m,wind_speed_10m`);const data = await response.json();return data.current.temperature_2m;}const tools = [{type: "function",function: {name: "get_weather",description: "Get current temperature for provided coordinates in celsius.",parameters: {type: "object",properties: {latitude: { type: "number" },longitude: { type: "number" }},required: ["latitude", "longitude"]}}}];const messages = [{role: "user",content: "What's the weather like in Paris today?"}];const completion = await client.chat.completions.create({model: "hunyuan-turbos-latest",messages,tools});console.log(JSON.stringify(completion))// 在第一次响应的基础上 第二次发送请求const toolCall = completion.choices[0].message.tool_calls[0];const args = JSON.parse(toolCall.function.arguments);const result = await getWeather(args.latitude, args.longitude);messages.push(completion.choices[0].message); // append model's function call messagemessages.push({ // append result messagerole: "tool",tool_call_id: toolCall.id,content: result.toString()});const completion_2 = await client.chat.completions.create({model: "hunyuan-turbos-latest",messages,tools});JSON.stringify(completion_2)
import ("context""encoding/json""fmt""io/ioutil""net/http""github.com/openai/openai-go""github.com/openai/openai-go/option")func main() {// 构造 clientclient := openai.NewClient(option.WithAPIKey(os.Getenv("HUNYUAN_API_KEY")), // 混元 APIKeyoption.WithBaseURL("https://api.hunyuan.cloud.tencent.com/v1/"), // 混元 endpoint)tools := []openai.ChatCompletionToolParam{{Type: "function",Function: openai.FunctionDefinitionParam{Name: "get_weather",Description: openai.String("Get current temperature for provided coordinates in celsius."),Parameters: openai.FunctionParameters{"type": "object","properties": map[string]any{"latitude": map[string]any{"type": "number",},"longitude": map[string]any{"type": "number",},},"required": []string{"latitude", "longitude"},},},},}messages := []openai.ChatCompletionMessageParamUnion{openai.UserMessage("What's the weather like in Paris today?"),}chatCompletion, err := client.Chat.Completions.New(context.TODO(),openai.ChatCompletionNewParams{Model: "hunyuan-turbos-latest",Messages: messages,Tools: tools,},)if err != nil {panic(err.Error())}fmt.Println(chatCompletion.Choices[0].Message.ToolCalls)// 在第一次响应的基础上 第二次发送请求toolCall := chatCompletion.Choices[0].Message.ToolCalls[0]var args WeatherArgif err = json.Unmarshal([]byte(toolCall.Function.Arguments), &args); err != nil {panic(err.Error())}result, err := getWeather(args.Latitude, args.Longitude)if err != nil {panic(err.Error())}messages = append(messages, openai.AssistantMessage(chatCompletion.Choices[0].Message.Content))messages = append(messages, openai.ToolMessage(toolCall.ID, fmt.Sprintf("%f", result)))chatCompletion2, err := client.Chat.Completions.New(context.TODO(),openai.ChatCompletionNewParams{Model: "hunyuan-turbos-latest",Messages: messages,Tools: tools,},)if err != nil {panic(err.Error())}fmt.Println(chatCompletion2.Choices[0].Message.Content)}// WeatherResponse 定义返回的天气数据结构体type WeatherResponse struct {Current struct {Temperature float64 `json:"temperature_2m"`} `json:"current"`}// WeatherArg 天气参数type WeatherArg struct {Latitude float64 `json:"latitude"`Longitude float64 `json:"longitude"`}func getWeather(latitude, longitude float64) (float64, error) {url := fmt.Sprintf("https://api.open-meteo.com/v1/forecast?latitude=%f&longitude=%f¤t=temperature_2m,wind_speed_10m&hourly=temperature_2m,relative_humidity_2m,wind_speed_10m", latitude, longitude)resp, err := http.Get(url)if err != nil {return 0, fmt.Errorf("failed to get weather data: %v", err)}defer resp.Body.Close()body, err := ioutil.ReadAll(resp.Body)if err != nil {return 0, fmt.Errorf("failed to read response body: %v", err)}var weather WeatherResponseerr = json.Unmarshal(body, &weather)if err != nil {return 0, fmt.Errorf("failed to unmarshal response: %v", err)}return weather.Current.Temperature, nil}
第二次响应示例:
{"id": "b03283653e27bc78a9c095699cfbc123","choices": [{"finish_reason": "stop","index": 0,"message": {"content": "The current temperature in Paris is 7.6°C.","role": "assistant"}}],"created": 1742453367,"model": "hunyuan-turbos-latest","object": "chat.completion","system_fingerprint": "","usage": {"completion_tokens": 24,"prompt_tokens": 71,"total_tokens": 95},"note": "以上内容为AI生成,不代表开发者立场,请勿删除或修改本标记"}
之后可以继续进行对话。
OpenAI 兼容参数
参数名称 | 必选 | 类型 | 默认值 | 描述 |
model | 是 | string | 无 | 示例值:hunyuan-turbos-latest |
messages | 是 | object[] | 无 | 聊天上下文信息。相关字段可参考上文调用示例。 说明: 1. 长度最多为 40,按对话时间从旧到新在数组中排列。 2. message.role 可选值:system、user、assistant、 tool( function call 场景)。 3. messages 中 content 总长度不能超过模型输入长度上限(可参考 产品概述 文档),超过则会截断最前面的内容,只保留尾部内容。 |
stream | 否 | boolean | false | 流式调用开关。 说明: 1. 未传值时默认为非流式调用(false)。 2. 流式调用时以 SSE 协议增量返回结果(返回值取 choices[n].delta 中的值,需要拼接增量数据才能获得完整结果)。 3. 非流式调用时: 调用方式与普通 HTTP 请求无异。 接口响应耗时较长,如需更低时延建议设置为 true。 只返回一次最终结果(返回值取 choices[n].message 中的值)。 示例值:false |
max_tokens | 否 | integer | 4096 | 限制一次请求中模型生成 completion 的最大 token 数。输入 token 和输出 token 的总长度受模型的上下文长度的限制。 |
seed | 否 | integer | 无 | 说明: 1. 确保模型的输出是可复现的。 2. 取值区间为非0正整数,最大值10000。 3. 非必要不建议使用,不合理的取值会影响效果。 示例值:1 |
stop | 否 | string[] | 无 | 自定义结束生成字符串。 调用 OpenAI 接口时,如果您指定了 stop 参数, 模型会停止在匹配到 stop 的内容之前。 在调用混元接口时,会停止在匹配到 stop 的内容之后。 说明:未来我们可能会修改此行为以便和 OpenAI 保持一致。但是目前有使用该参数的情况下,开发者需要注意该参数是否会对应用造成影响,以及未来该行为调整时带来的影响。 |
temperature | 否 | number | 无 | 说明: 1. 影响模型输出多样性,模型已有默认参数,不传值时使用各模型推荐值,不推荐用户修改。 2. 取值区间为 [0.0, 2.0]。较高的数值会使输出更加多样化和不可预测,而较低的数值会使其更加集中和确定。 |
top_p | 否 | number | 0 | 说明: 1. 影响输出文本的多样性。模型已有默认参数,不传值时使用各模型推荐值,不推荐用户修改。 2. 取值区间为 [0.0, 1.0]。取值越大,生成文本的多样性越强。 |
tools | 否 | object[] | 无 | 可调用的工具列表,相关字段可参考上文调用示例。 |
tool_choice | 否 | object | 无 | 工具使用选项,可选值包括 none、auto、custom。 说明: 1. 仅对 hunyuan-turbos、hunyuan-functioncall 模型生效。 2. none:不调用工具。 auto:模型自行选择生成回复或调用工具。 custom:强制模型调用指定的工具。 3. 未设置时,默认值为 auto。 示例值:auto |
stream_options | 否 | object | 无 | 流式输出相关选项。只有在 stream 参数为 true 时,才可设置此参数。 |
混元自定义参数
参数名称 | 必选 | 类型 | 默认值 | 描述 |
citation | 否 | boolean | false | 搜索引文角标开关。 说明: 1. 配合 enable_enhancement 和 search_info 参数使用。打开后,回答中命中搜索的结果会在片段后增加角标标志,对应 search_info 列表中的链接。 2. false:开关关闭;true:开关打开。 3. 未传值时默认开关关闭(false)。 |
enable_enhancement | 否 | boolean | false | 功能增强(如搜索)开关。 说明: 1. hunyuan-lite 无功能增强(如搜索)能力,该参数对 hunyuan-lite 版本不生效。 2. 未传值时默认关闭开关。 3. 关闭时将直接由主模型生成回复内容,可以降低响应时延(对于流式输出时的首字时延尤为明显)。但在少数场景里,回复效果可能会下降。 4. 安全审核能力不属于功能增强范围,不受此字段影响。 5. 2025年04月20日 00:00:00起,由默认开启状态转为默认关闭状态。 |
enable_multimedia | 否 | boolean | false | 多媒体开关。 说明: 1. 该参数目前仅对白名单内用户生效,如您想体验该功能请 联系我们。 2. 该参数仅在功能增强(如搜索)开关开启(enable_enhancement=true)并且极速版搜索开关关闭(enable_speed_search=false)时生效。 3. hunyuan-lite 无多媒体能力,该参数对 hunyuan-lite 版本不生效。 4. 未传值时默认关闭。 5. 开启并搜索到对应的多媒体信息时,会输出对应的多媒体地址,可以定制个性化的图文消息。 |
enable_recommended_questions | 否 | boolean | false | 推荐问答开关。 说明: 1. 未传值时默认关闭。 2. 开启后,在返回值的最后一个包中会增加 recommended_questions 字段表示推荐问答, 最多返回3条。 |
force_search_enhancement | 否 | boolean | false | 强制搜索增强开关。 说明: 1. 未传值时默认关闭。 2. 开启后,将强制走AI搜索,当 AI 搜索结果为空时,由大模型回复兜底话术。 |
search_info | 否 | boolean | false | 在值为 true 且命中搜索时,接口会返回 search_info。 |
enable_deep_search | 否 | boolean | false | 是否开启深度研究该问题,默认是 false,在值为 true 且命中深度研究该问题时,会返回深度研究该问题信息。 |
enable_deep_read | 否 | boolean | false | 文档深度阅读开关。 说明: 1. 未传值时默认关闭。 2. 开启后,需要根据文件的具体类型,指定不同的 prompt 模板。例如:核心速览、论文评价、主要内容、关键问题及回答等。 3. 当前仅支持单轮,单文档的深度阅读。 |
与OpenAI的差异
/v1/chat/completions
stop
调用 OpenAI 的接口时,如果您指定了
stop
参数, 模型会停止在匹配到 stop
的内容之前。在调用混元接口时,会停止在匹配到
stop
的内容之后。以原始输出 “
我是一个AI助手可以帮助您在不同方面做出更好的决策,解答您的疑问并提供可靠的信息。
”为例:类型 | stop 参数 | 模型输出 |
OpenAI | 助手 | 我是一个 AI |
混元 | 助手 | 我是一个 AI 助手 |
说明:
未来我们可能会修改此行为以便和 OpenAI 保持一致。
但是目前有使用该参数的情况下,开发者需要注意该参数是否会对应用造成影响,以及未来该行为调整时带来的影响。
stream_options
当流式返回且
stream_options.include_usage=true
时,会在最后一个数据块中返回 usage
信息。/v1/embeddings
embedding 接口目前仅支持
input
和 model
参数,model
当前固定为 hunyuan-embedding
,dimensions
固定为 1024。说明:
我们将努力保证混元与 OpenAI 的兼容性,但是仍然会存在一些细微的差异(通常来说并不会破坏整体的兼容性或者影响功能的使用)。
本文档会列出混元兼容接口与 OpenAI 的差异,开发者可以自行检查并评估对您应用的影响。
Embedding
curl --location 'https://api.hunyuan.cloud.tencent.com/v1/embeddings' \\-H 'Content-Type: application/json' \\-H 'Authorization: Bearer $HUNYUAN_API_KEY' \\--data '{"model": "hunyuan-embedding","input": "你好"}'
输出示例:
{"object": "list","data": [{"index": 0,"embedding": [-0.0009261319064535201,-0.01005222275853157,......],"object": "embedding"}],"model": "hunyuan-embedding","usage": {"prompt_tokens": 3,"total_tokens": 3}}