PyTorch Handbook

224课时
3.1K学过
8分

10. CNN:MNIST数据集手写数字识别

11. RNN实例:通过Sin预测Cos

课程评价 (0)

请对课程作出评价:
0/300

学员评价

暂无精选评价
4分钟

Neural Networks

使用torch.nn包来构建神经网络。

上一讲已经讲过了autogradnn包依赖autograd包来定义模型并求导。 一个nn.Module包含各个层和一个forward(input)方法,该方法返回output

例如:

它是一个简单的前馈神经网络,它接受一个输入,然后一层接着一层地传递,最后输出计算的结果。

神经网络的典型训练过程如下:

  1. 定义包含一些可学习的参数(或者叫权重)神经网络模型;
  2. 在数据集上迭代;
  3. 通过神经网络处理输入;
  4. 计算损失(输出结果和正确值的差值大小);
  5. 将梯度反向传播回网络的参数;
  6. 更新网络的参数,主要使用如下简单的更新原则: weight = weight - learning_rate * gradient