4分钟
Neural Networks
使用torch.nn包来构建神经网络。
上一讲已经讲过了autograd,nn包依赖autograd包来定义模型并求导。 一个nn.Module包含各个层和一个forward(input)方法,该方法返回output。
例如:
它是一个简单的前馈神经网络,它接受一个输入,然后一层接着一层地传递,最后输出计算的结果。
神经网络的典型训练过程如下:
- 定义包含一些可学习的参数(或者叫权重)神经网络模型;
- 在数据集上迭代;
- 通过神经网络处理输入;
- 计算损失(输出结果和正确值的差值大小);
- 将梯度反向传播回网络的参数;
- 更新网络的参数,主要使用如下简单的更新原则:
weight = weight - learning_rate * gradient
学员评价