开始
In [1]:
%matplotlib inlineTensors(张量)
Tensors与Numpy中的 ndarrays类似,但是在PyTorch中 Tensors 可以使用GPU进行计算.
In [2]:
from __future__ import print_function
import torch创建一个 5x3 矩阵, 但是未初始化:
In [3]:
x = torch.empty(5, 3)
print(x)tensor([[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000]])
创建一个随机初始化的矩阵:
In [4]:
x = torch.rand(5, 3)
print(x)tensor([[0.6972, 0.0231, 0.3087], [0.2083, 0.6141, 0.6896], [0.7228, 0.9715, 0.5304], [0.7727, 0.1621, 0.9777], [0.6526, 0.6170, 0.2605]])
创建一个0填充的矩阵,数据类型为long:
In [5]:
x = torch.zeros(5, 3, dtype=torch.long)
print(x)tensor([[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]])
创建tensor并使用现有数据初始化:
In [6]:
x = torch.tensor([5.5, 3])
print(x)tensor([5.5000, 3.0000])
根据现有的张量创建张量。 这些方法将重用输入张量的属性,例如, dtype,除非设置新的值进行覆盖
In [7]:
x = x.new_ones(5, 3, dtype=torch.double) # new_* 方法来创建对象
print(x)
x = torch.randn_like(x, dtype=torch.float) # 覆盖 dtype!
print(x) # 对象的size 是相同的,只是值和类型发生了变化tensor([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.]], dtype=torch.float64) tensor([[ 0.5691, -2.0126, -0.4064], [-0.0863, 0.4692, -1.1209], [-1.1177, -0.5764, -0.5363], [-0.4390, 0.6688, 0.0889], [ 1.3334, -1.1600, 1.8457]])
获取 size
译者注:使用size方法与Numpy的shape属性返回的相同,张量也支持shape属性,后面会详细介绍
In [8]:
print(x.size())torch.Size([5, 3])
Note
``torch.Size`` 返回值是 tuple类型, 所以它支持tuple类型的所有操作.
操作
操作有多种语法。
我们将看一下加法运算。
加法1:
In [9]:
y = torch.rand(5, 3)
print(x + y)tensor([[ 0.7808, -1.4388, 0.3151], [-0.0076, 1.0716, -0.8465], [-0.8175, 0.3625, -0.2005], [ 0.2435, 0.8512, 0.7142], [ 1.4737, -0.8545, 2.4833]])
加法2
In [10]:
print(torch.add(x, y))tensor([[ 0.7808, -1.4388, 0.3151], [-0.0076, 1.0716, -0.8465], [-0.8175, 0.3625, -0.2005], [ 0.2435, 0.8512, 0.7142], [ 1.4737, -0.8545, 2.4833]])
提供输出tensor作为参数
In [11]:
result = torch.empty(5, 3)
torch.add(x, y, out=result)
print(result)tensor([[ 0.7808, -1.4388, 0.3151], [-0.0076, 1.0716, -0.8465], [-0.8175, 0.3625, -0.2005], [ 0.2435, 0.8512, 0.7142], [ 1.4737, -0.8545, 2.4833]])
替换
In [12]:
# adds x to y
y.add_(x)
print(y)tensor([[ 0.7808, -1.4388, 0.3151], [-0.0076, 1.0716, -0.8465], [-0.8175, 0.3625, -0.2005], [ 0.2435, 0.8512, 0.7142], [ 1.4737, -0.8545, 2.4833]])
Note
任何 以``_`` 结尾的操作都会用结果替换原变量. 例如: ``x.copy_(y)``, ``x.t_()``, 都会改变 ``x``.
你可以使用与NumPy索引方式相同的操作来进行对张量的操作
In [13]:
print(x[:, 1])tensor([-2.0126, 0.4692, -0.5764, 0.6688, -1.1600])
torch.view: 可以改变张量的维度和大小
译者注:torch.view 与Numpy的reshape类似
In [14]:
x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8) # size -1 从其他维度推断
print(x.size(), y.size(), z.size())torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])
如果你有只有一个元素的张量,使用.item()来得到Python数据类型的数值
In [15]:
x = torch.randn(1)
print(x)
print(x.item())tensor([-0.2368]) -0.23680149018764496
Read later:
100+ Tensor operations, including transposing, indexing, slicing, mathematical operations, linear algebra, random numbers, etc., are described here <https://pytorch.org/docs/torch>_.
学员评价