10分钟
Series
1. 创建: class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False,fastpath=False):
参数:
data:它可以是一个字典、array-like、标量。表示Series包含的数据,如果是序列/数组,则它必须是一维的- 如果是字典,则字典的键指定了
label。如果你同时使用了index,则以index为准。 - 如果是标量,则结果为:该标量扩充为
index长度相同的列表。 index:一个array-like或者一个Index对象。它指定了label。其值必须唯一而且hashable,且长度与data一致。如果data是一个字典,则index将会使用该字典的key(此时index不起作用)。如果未提供,则使用np.arange(n)。name:一个字符串,为Series的名字。dtype:指定数据类型。如果为None,则数据类型被自动推断copy:一个布尔值。如果为True,则拷贝输入数据data
2. 还可以通过类方法创建Series:Series.from_array(arr, index=None, name=None, dtype=None,copy=False, fastpath=False):其中arr可以是一个字典、array-like、标量。其他参数见1.
3. 我们可以将Series转换成其他数据类型:
.to_dict():转换成字典,格式为{label->value}.to_frame([name]):转换成DataFrame。name为Index的名字.tolist():转换成列表
4. 可以将Series转换成字符串:
.to_string(buf=None, na_rep='NaN', float_format=None, header=True, index=True,
length=False, dtype=False, name=False, max_rows=None)
学员评价