MySQL 5.7 JSON 实现简介

作者介绍:吴双桥 腾讯云工程师

本文主要介绍在MySQL 5.7.7开始引入的非结构化数据类型JSON的特性以及具体的实现方式(包括存储方式)。

  • 首先介绍为什么要引入JSON的原生数据类型的支持
  • 接着介绍MySQL给用户提供的JSON操作函数,以及JSON路径表达式语法,结合两者,用户可以在数据库级别操作JSON的任意键值和数据
  • 最后,重点介绍JSON在服务器侧的存储结构,这也是深入理解很多其他JSON特性的根基;在最后介绍JSON作为新数据类型的比较与排序规则之前,介绍了对JSON类型数据建立索引的原理。

为什么JSON的原生支持

1 . 文档合法性

在MySQL5.7.7对JSON提供原生类型的支持之前,用户可以用TEXT或者BLOB类型来存储JSON文档。但对于MySQL来说,用户插入的数据只是序列化后的一个普通的字符串,不会对JSON文档本身的语法合法性做检查,文档的合法性需要用户自己保证。在引入新的JSON类型之后,插入语法错误的JSON文档,MySQL会提示错误,并在插入之后做归一化处理,保证每一个键对应一个值。

2. 更有效的访问

MySQL 5.7.7+本身提供了很多原生的函数以及路径表达式来方便用户访问JSON数据。例如对于下面的JSON文档:

 { "a": [ [ 3, 2 ], [ { "c" : "d" }, 1 ] ], "b": { "c" : 6 }, "one potato": 7, "b.c" : 8 }

用户可以使用

$.a[1][0]获取{ "c" : "d" }

$.a[1]获取[ { "c" : "d" }, 1 ]

还可以使用通配符 *** 来进行模糊匹配,详见下一段。

3 . 性能优化

在MySQL提供JSON原生支持之前,如果用户需要获取或者修改某个JSON文档的键值,需要把TEXT或者BLOB整个字符串读出来反序列化成JSON对象,然后通过各种库函数访问JSON数据。显然这样是非常没有效率的,特别是对较大的文档。而原生JSON的性能,特别是读性能非常好。根据Oracle公司针对200K+数据文档做的性能测试表明,同样的数据用TEXT和JSON类型的查询性能差异达到两个数量级以上,而且用户还可以对经常访问的JSON键值做索引,进一步提升性能。JSON数据操作性能的提升是基于JSON数据本身的存储结构的,下文会进一步介绍。

JSON的操作接口及路径表达式

1. JSON的操作接口

根据MySQL官方文档的介绍,服务器端JSON函数的实现需要满足以下条件:

Requirements:

  1. Lets users construct JSON data values from other relational data.
  2. Lets users extract relational data from JSON data values.
  3. Lets users minimally introspect the structure of JSON values and text (validity, length, depth, keys).
  4. Works on strings which are utf8mb4 encoded.
  5. Performance should be suitable for read-intensive applications.

Non-requirements:

  1. May produce surprising results on strings which are not utf8mb4 encoded.
  2. There is limited support for decimal values nested inside JSON documents.
  3. Performance may not be suitable for write-intensive applications.

提供的函数列表具体为:

 JSON_APPEND() JSON_ARRAY_INSERT() JSON_UNQUOTE() JSON_ARRAY()
 JSON_REPLACE() JSON_CONTAINS() JSON_DEPTH() JSON_EXTRACT()
JSON_INSERT() JSON_KEYS() JSON_LENGTH() JSON_VALID()
JSON_MERGE() JSON_OBJECT() JSON_QUOTE() JSON_REMOVE()
JSON_CONTAINS_PATH() JSON_SEARCH() JSON_SET() JSON_TYPE()

以上函数的调用规则大多形如:

JSON_APPEND(json_doc, path, val[, path, val] ...)

第一个参数json_doc为JSON文档,或者是表里面的某一列,也可以是JSON文档里面的嵌套子文档变量;

第二个参数path为路径表达式,用来定位要访问的键,path(即路径表达式)下面紧接着会介绍;

第三个参数val有的函数可能没有,若有表示键对应的操作数值。

2. JSON路径表达式

为了更方便快速的访问JSON的键值,MySQL 5.7.7+提供了新的路径表达式语法支持。前文提到的$.a[1][0]就是路径表达式的一个具体的示例。完整的路径表达式语法为:

pathExpression> ::= scope  [ ( pathLeg )* ]
scope ::= [ columnReference ] dollarSign
columnReference ::= [ [ databaseIdentifier period  ] tableIdentifier period ] columnIdentifier
databaseIdentifier ::= sqlIdentifier
tableIdentifier ::= sqlIdentifier
columnIdentifier ::= sqlIdentifier
pathLeg ::= member | arrayLocation | doubleAsterisk
member ::= period ( keyName | asterisk )
arrayLocation ::= leftBracket ( non-negative-integer | asterisk ) rightBracket
 keyName ::= ECMAScript-identifier | double-quoted-string-literal
doubleAsterisk ::= **

还是以

    { "a": [ [ 3, 2 ], [ { "c" : "d" }, 1 ] ], "b": { "c" : 6 }, "one potato": 7, "b.c" : 8 }

为例,再举几个例子说明:

$.a[1] 获取的值为 [ { "c" : "d" }, 1 ]

$.b.c 获取的值为 6

$."b.c" 获取的值为 8

对比上面最后两个例子,可以看到用引号包围的表达式会被当作一个字符串键值。

关于通配符***来进行模糊匹配需要做进一步的说明。

两个连着星号**不能作为表达式的结尾,不能出现连续的三个星号***

单个星号*表示匹配某个JSON对象中所有的成员

[*]表示匹配某个JSON数组中的所有元素

prefix**suffix表示所有以prefix开始,以suffix结尾的路径

举个具体的例子,直接在MySQL命令行里面输入:

 select json_extract('{ "a": [ [ 3, 2 ], [ { "c" : "d" }, 1 ] ], "b": { "c" : 6 }, "one potato": 7, "b.c" : 8 }','$**.c');

得到显示结果:["d", 6]

JSON的存储结构及具体实现

在处理JSON时,MySQL使用的utf8mb4字符集,utf8mb4是utf8和ascii的超集。由于历史原因,这里utf8并非是我们常说的UTF-8 Unicode变长编码方案,而是MySQL自身定义的utf8编码方案,最长为三个字节。具体区别非本文重点,请大家自行Google了解。

MySQL在内存中是以DOM的形式表示JSON文档,而且在MySQL解析某个具体的路径表达式时,只需要反序列化和解析路径上的对象,而且速度极快。要弄清楚MySQL是如何做到这些的,我们就需要了解JSON在硬盘上的存储结构。有个有趣的点是,JSON对象是BLOB的子类,在其基础上做了特化。

根据MySQL官方文档的表述:

On a high level, we will store the contents of the JSON document in three sections:

  • A table of pointers to all the keys and values, in the order in which the keys and values are stored. Each pointer contains information about where the data associated with the key or the value is located, as well as type information about the key or value pointed to. *All the keys. The keys are sorted, so that lookup can use binary search to locate the key quickly.
  • All the values, in the same order as their corresponding keys. If the document is an array, it has two sections only: the dictionary and the values. If the document is a scalar, it has a single section which contains the scalar value

我们来使用示意图更清晰的展示它的结构:

JSON文档本身是层次化的结构,因而MySQL对JSON存储也是层次化的。对于每一级对象,存储的最前面为存放当前对象的元素个数,以及整体占的大小。需要注意的是:

  • JSON对象的Key索引(图中橙色部分)都是排序好的,先按长度排序,长度相同的按照code point排序;Value索引(图中黄色部分)根据对应的Key的位置依次排列,最后面真实的数据存储(图中白色部分)也是如此
  • Key和Value的索引对存储了对象内的偏移和大小,单个索引的大小固定,可以通过简单的算术跳转到距离为N的索引
  • 通过MySQL5.7.16源代码可以看到,在序列化JSON文档时,MySQL会动态检测单个对象的大小,如果小于64KB使用两个字节的偏移量,否则使用四个字节的偏移量,以节省空间。同时,动态检查单个对象是否是大对象,会造成对大对象进行两次解析,源代码中也指出这是以后需要优化的点
  • 现在受索引中偏移量和存储大小四个字节大小的限制,单个JSON文档的大小不能超过4G;单个KEY的大小不能超过两个字节,即64K
  • 索引存储对象内的偏移是为了方便移动,如果某个键值被改动,只用修改受影响对象整体的偏移量
  • 索引的大小现在是冗余信息,因为通过相邻偏移可以简单的得到存储大小,主要是为了应对变长JSON对象值更新,如果长度变小,JSON文档整体都不用移动,只需要当前对象修改大小
  • 现在MySQL对于变长大小的值没有预留额外的空间,也就是说如果该值的长度变大,后面的存储都要受到影响
  • 结合JSON的路径表达式可以知道,JSON的搜索操作只用反序列化路径上涉及到的元素,速度非常快,实现了读操作的高性能
  • 不过,MySQL对于大型文档的变长键值的更新操作可能会变慢,可能并不适合写密集的需求

JSON的索引

现在MySQL不支持对JSON列进行索引,官网文档的说明是:

JSON columns cannot be indexed. You can work around this restriction by creating an index on a generated column that extracts a scalar value from the JSON column.

虽然不支持直接在JSON列上建索引,但MySQL规定,可以首先使用路径表达式对JSON文档中的标量值建立虚拟列,然后在虚拟列上建立索引。这样用户可以使用表达式对自己感兴趣的键值建立索引。举个具体的例子来说明:

CREATE TABLE features (
 id INT NOT NULL AUTO_INCREMENT,
 feature JSON NOT NULL,
 PRIMARY KEY (id)
);

插入它的JSON数据的格式为:

{
   "type":"Feature",
   "properties":{
      "TO_ST":"0",
      "BLKLOT":"0001001",
      "STREET":"UNKNOWN",
      "FROM_ST":"0",
      "LOT_NUM":"001",
      "ST_TYPE":null,
      "ODD_EVEN":"E",
      "BLOCK_NUM":"0001",
      "MAPBLKLOT":"0001001"
   }
}

使用:

ALTER TABLE features ADD feature_street VARCHAR(30) AS (JSON_UNQUOTE(feature->"$.properties.STREET"));
ALTER TABLE features ADD INDEX (feature_street);

两个步骤,可以对feature列中properties键值下的STREET键(feature->"$.properties.STREET")创建索引。

其中,feature_street列就是新添加的虚拟列。之所以取名虚拟列,是因为与它对应的还有一个存储列(stored column)。它们最大的区别为虚拟列只修改数据库的metadata,并不会存储真实的数据在硬盘上,读取过程也是实时计算的方式;而存储列会把表达式的列存储在硬盘上。两者使用的场景不一样,默认情况下通过表达式生成的列为虚拟列。

这样虚拟列的添加和删除都会非常快,而在虚拟列上建立索引跟传统的建立索引的方式并没有区别,会提高虚拟列读取的性能,减慢整体插入的性能。虚拟列的特性结合JSON的路径表达式,可以方便的为用户提供高效的键值索引功能。

JSON比较与排序

JSON值可以使用=, <, <=, >, >=, <>, !=, <=>等操作符,BETWEEN, IN,GREATEST, LEAST等操作符现在还不支持。JSON值使用的两级排序规则,第一级基于JSON的类型,类型不同的使用每个类型特有的排序规则。

JSON类型按照优先级从高到低为

BLOB
BIT
OPAQUE
DATETIME
TIME
DATE
BOOLEAN
ARRAY
OBJECT
STRING
INTEGER, DOUBLE
NULL

优先级高的类型大,不用再进行其他的比较操作;如果类型相同,每个类型按自己的规则排序。具体的规则如下:

  1. BLOB/BIT/OPAQUE: 比较两个值前N个字节,如果前N个字节相同,短的值小
  2. DATETIME/TIME/DATE: 按照所表示的时间点排序
  3. BOOLEAN: false小于true
  4. ARRAY: 两个数组如果长度和在每个位置的值相同时相等,如果不想等,取第一个不相同元素的排序结果,空元素最小
  5. OBJECT: 如果两个对象有相同的KEY,并且KEY对应的VALUE也都相同,两者相等。否则,两者大小不等,但相对大小未规定。
  6. STRING: 取两个STRING较短的那个长度为N,比较两个值utf8mb4编码的前N个字节,较短的小,空值最小
  7. INTEGER/DOUBLE: 包括精确值和近似值的比较,稍微有点复杂,可能出现与直觉相悖的结果,具体参见官方文档相关说明。

任何JSON值与SQL的NULL常量比较,得到的结果是UNKNOWN。对于JSON值和非JSON值的比较,按照一定的规则将非JSON值转化为JSON值,然后按照以上的规则进行比较。

小结

本文主要介绍了MySQL在5.7.7之后引入的原生JSON支持的特性,说明了引入JSON类型的好处,并结合具体的示例介绍了MySQL在JSON类型上对外的接口以及引入的新语法规则。此外,还重点介绍了JSON在硬盘上的存储结构,简要分析了这种存储结构的优势和不足。最后还介绍了JSON的索引原理,以及比较和排序规则。相信理解了本文介绍的内容,关于JSON文中没有提到的部分内容也较容易理解。

更多数据库文章,请关注腾讯云数据库公众号: QcloudCDB

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏逍遥剑客的游戏开发

关于中文文本的截取

2377
来自专栏JavaEE

mybatis-plus的使用 ------ 进阶

关于mybatis-plus的简介以及基本使用,我在《mybatis-plus的使用 ------ 入门》一文中已做介绍,此处不再赘述。本文主要对mybatis...

2516
来自专栏coder修行路

Python爬虫从入门到放弃(十九)之 Scrapy爬取所有知乎用户信息(下)

在上一篇文章中主要写了关于爬虫过程的分析,下面是代码的实现,完整代码在: https://github.com/pythonsite/spider items中...

1959
来自专栏从流域到海域

《笨办法学Python》 第29课手记

《笨办法学Python》 第29课手记 本节课讲if语句。 本节内容比较简单,如果觉得你的代码没有错误,但运行时报错,那么你的代码肯定有错误。相信我解释器是已经...

1796
来自专栏landv

C语言_函数【转】

1623
来自专栏自动化测试实战

接口测试框架——第二篇

3518
来自专栏jouypub

MySQL修改group_concat的长度限制

在mysql中,有个函数叫“group_concat”,平常使用可能发现不了问题,在处理大数据的时候,会发现内容被截取了,

692
来自专栏乐沙弥的世界

Oracle 硬解析与软解析

Oracle 硬解析与软解析是我们经常遇到的问题,什么情况会产生硬解析,什么情况产生软解析,又当如何避免硬解析?下面的描述将给出

703
来自专栏jouypub

修改MYSQL中group_concat的长度限制

在mysql中,有个函数叫“group_concat”,平常使用可能发现不了问题,在处理大数据的时候,会发现内容被截取了,

1331
来自专栏个人随笔

MySQL 视图

数据库视图是虚拟表或逻辑表,它被定义为具有连接的SQL SELECT查询语句。 因为数据库视图与数据库表类似,它由行和列组成,因此可以根据数据库表查询数据。 大...

33011

扫码关注云+社区