前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >从零开始学C++之STL(九):函数适配器bind2nd 、mem_fun_ref 源码分析、函数适配器应用举例

从零开始学C++之STL(九):函数适配器bind2nd 、mem_fun_ref 源码分析、函数适配器应用举例

作者头像
s1mba
发布2017-12-28 15:55:53
8590
发布2017-12-28 15:55:53
举报
文章被收录于专栏:开发与安全开发与安全

一、适配器

三种类型的适配器:

容器适配器:用来扩展7种基本容器,利用基本容器扩展形成了栈、队列和优先级队列

迭代器适配器:(反向迭代器、插入迭代器、IO流迭代器)

函数适配器:函数适配器能够将仿函数和另一个仿函数(或某个值、或某个一般函数)结合起来。

针对成员函数的函数适配器 针对一般函数的函数适配器

二、函数适配器示例

代码语言:cpp
复制
#include <iostream>
#include <algorithm>
#include <functional>
#include <vector>

using namespace std;

bool is_odd(int n)
{
    return n % 2 == 1;
}

int main(void)
{
    int a[] = {1, 2, 3, 4, 5};
    vector<int> v(a, a + 5);

    cout << count_if(v.begin(), v.end(), is_odd) << endl;

    //计算奇数元素的个数
    // 这里的bind2nd将二元函数对象modulus转换为一元函数对象。
    //bind2nd(op, value) (param)相当于op(param, value)
    cout << count_if(v.begin(), v.end(),
                     bind2nd(modulus<int>(), 2)) << endl;


    //bind1st(op, value)(param)相当于op(value, param);
    cout << count_if(v.begin(), v.end(),
                     bind1st(less<int>(), 4)) << endl;

    return 0;
}

这里的bind2nd将二元函数对象modulus转换为一元函数对象。是如何做到的呢?跟踪源码就知道了。

首先,bind2nd 是一个模板函数,如下:

代码语言:cpp
复制
// TEMPLATE FUNCTION bind2nd
template < class _Fn2,
         class _Ty > inline
binder2nd<_Fn2> bind2nd(const _Fn2 &_Func, const _Ty &_Right)
{
    // return a binder2nd functor adapter
    typename _Fn2::second_argument_type _Val(_Right);
    return (std::binder2nd<_Fn2>(_Func, _Val));
}

将匿名对象modulus<int>() 和 2 传递进去,返回值是 std::binder2nd<_Fn2>(_Func, _Val);  即是一个模板类对象,看binder2nd 模板类

代码语言:cpp
复制
// TEMPLATE CLASS binder2nd
template<class _Fn2>
class binder2nd
    : public unary_function < typename _Fn2::first_argument_type,
      typename _Fn2::result_type >
{
    // functor adapter _Func(left, stored)
public:
    typedef unary_function < typename _Fn2::first_argument_type,
            typename _Fn2::result_type > _Base;
    typedef typename _Base::argument_type argument_type;
    typedef typename _Base::result_type result_type;

    binder2nd(const _Fn2 &_Func,
              const typename _Fn2::second_argument_type &_Right)
        : op(_Func), value(_Right)
    {
        // construct from functor and right operand
    }

    result_type operator()(const argument_type &_Left) const
    {
        // apply functor to operands
        return (op(_Left, value));
    }

    result_type operator()(argument_type &_Left) const
    {
        // apply functor to operands
        return (op(_Left, value));
    }

protected:
    _Fn2 op;    // the functor to apply
    typename _Fn2::second_argument_type value;  // the right operand
};

即构造时,binder2nd 的2个成员op 和 value 分别用modulus<int>() 和 2 初始化。接着看count_if 中的主要代码:

for (; _First != _Last; ++_First)

if (_Pred(*_First))

++_Count;

*_First  就是遍历得到的容器元素了,当满足_Pred 条件时_Count++,此时可以看成是:

std::binder2nd< modulus<int> >(modulus<int>(), 2)(*_First)  也就是调用binder2nd 类的operator() 函数,返回 return (op(_Left, value));

也就是modulus<int>()(*_First, 2);  也就是调用modulus 类的operator() 函数,如下:

代码语言:cpp
复制
// TEMPLATE STRUCT modulus
template<class _Ty>
struct modulus
        : public binary_function<_Ty, _Ty, _Ty>
{
    // functor for operator%
    _Ty operator()(const _Ty &_Left, const _Ty &_Right) const
    {
        // apply operator% to operands
        return (_Left % _Right);
    }
};

也就是如果左操作数是偶数则返回0,奇数% 2 == 1, 返回为真。最后总结,也就是count_if 计算容器中为奇数的元素个数,简单地

来说,可以理解成这样:bind2nd(op, value) (param)相当于op(param, value); 其中param 是元素值,value是需要绑定的参数,所谓

bind2nd 也即绑定第二个参数的意思,所以才说 bind2nd将二元函数对象modulus转换为一元函数对象,因为第二个参数就是2,当然

这里的第一个参数就是遍历得到的容器元素值了。

与bind2nd 类似的还有 bind1st,顾名思义是绑定第一个参数的意思,如下的表达式:

count_if(v.begin(), v.end(),  bind1st(less<int>(), 4)) ; 也就是说计算容器中大于4的元素个数。这里绑定的是左操作数。

三、函数适配器应用实例

(一)、针对成员函数的函数适配器

代码语言:cpp
复制
#include <iostream>
#include <algorithm>
#include <functional>
#include <vector>
#include <string>

using namespace std;

class Person
{
public:
    Person(const string &name) : name_(name) {}
    void Print() const
    {
        cout << name_ << endl;
    }
    void PrintWithPrefix(string prefix) const
    {
        cout << prefix << name_ << endl;
    }
private:
    string name_;
};

void foo(const vector<Person> &v)
{
    for_each(v.begin(), v.end(), mem_fun_ref(&Person::Print));
    for_each(v.begin(), v.end(), bind2nd(mem_fun_ref(&Person::PrintWithPrefix), "person: "));
}

void foo2(const vector<Person *> &v)
{
    for_each(v.begin(), v.end(), mem_fun(&Person::Print));
    for_each(v.begin(), v.end(), bind2nd(mem_fun(&Person::PrintWithPrefix), "person: "));
}

int main(void)
{
    vector<Person> v;
    v.push_back(Person("tom"));
    v.push_back(Person("jerry"));
    foo(v);

    vector<Person *> v2;
    v2.push_back(new Person("tom"));
    v2.push_back(new Person("jerry"));
    foo2(v2);
    return 0;
}

在foo 函数中,第一行的mem_fun_ref 将空元函数转换为一元函数对象,具体流程大家可以自己跟踪代码,实际上跟上面bind2nd 是类似的,

需要稍微说一下的是传递函数指针的情况:

代码语言:cpp
复制
template < class _Result,
         class _Ty > inline
const_mem_fun_ref_t<_Result, _Ty>
mem_fun_ref(_Result (_Ty::*_Pm)() const)
{
    // return a const_mem_fun_ref_t functor adapter
    return (std::const_mem_fun_ref_t<_Result, _Ty>(_Pm));
}

// TEMPLATE CLASS const_mem_fun_ref_t
template < class _Result,
         class _Ty >
class const_mem_fun_ref_t
    : public unary_function<_Ty, _Result>
{
    // functor adapter (*left.*pfunc)(), const *pfunc
public:
    explicit const_mem_fun_ref_t(_Result (_Ty::*_Pm)() const)
        : _Pmemfun(_Pm)
    {
        // construct from pointer
    }

    _Result operator()(const _Ty &_Left) const
    {
        // call function
        return ((_Left.*_Pmemfun)());
    }

private:
    _Result (_Ty::*_Pmemfun)() const;   // the member function pointer
};

传入的参数是一个函数指针,也就是void (Person::*_Pm) () const , 传递后 _Pm = &Print,在operator() 函数中

return ((_Left.*_Pmemfun)());   _Left 也就是遍历到的Person 类对象,先找到类的函数,然后进行调用。

第二行中mem_fun_ref 接受两个参数,明显是重载的版本,它将一元函数转换为二元函数对象,而bind2nd 再将其转化为一元函数对

象,即绑定了第二个参数为"person: ",跟踪源码可以看见这样的函数调用:

代码语言:cpp
复制
_Result operator()(_Ty &_Left, _Arg _Right) const
{
    // call function with operand
    return ((_Left.*_Pmemfun)(_Right));
}

也就是将第二个参数当作参数传递给PrintWithPrefix,所以打印出来的带有前缀person: 

而mem_fun 就类似了,只不过此次for_each 遍历得到的是对象指针,所以进行函数调用时需要用-> 操作符,如下所示:

代码语言:cpp
复制
_Result operator()(const _Ty *_Pleft) const
{
    // call function
    return ((_Pleft->*_Pmemfun)());
}

_Result operator()(const _Ty *_Pleft, _Arg _Right) const
{
    // call function with operand
    return ((_Pleft->*_Pmemfun)(_Right));
}

(二)、针对一般函数的函数适配器

例程1:

代码语言:cpp
复制
#include <iostream>
#include <algorithm>
#include <functional>
#include <vector>
#include <string>

using namespace std;

int main(void)
{
    char *a[] = {"", "BBB", "CCC"};
    vector<char *> v(a, a + 2);
    vector<char *>::iterator it;
    it = find_if(v.begin(), v.end(), bind2nd(ptr_fun(strcmp), ""));
    if (it != v.end())
        cout << *it << endl;

    return 0;
}

ptr_fun 将strcmp 二元函数转换为二元函数对象,bind2nd 再将其转化为一元函数对象,即绑定了第二个参数,因为strcmp 是在比较

不相等的情况返回为真,故find_if 查找的是第一个不等于空串的串位置。

例程2:

代码语言:cpp
复制
#include <iostream>
#include <algorithm>
#include <functional>
#include <vector>
#include <string>

using namespace std;

bool check(int elem)
{
    return elem < 3;
}

int main(void)
{
    int a[] = {1, 2, 3, 4, 5};
    vector<int> v(a, a + 5);

    vector<int>::iterator it;
    it = find_if(v.begin(), v.end(), not1(ptr_fun(check)));
    if (it != v.end())
        cout << *it << endl;
    return 0;
}

ptr_fun 做了一次转换,not1 再转换一次,故find_if 查找的是第一个大于等于3的元素位置。

这些代码的跟踪就留给大家自己完成了,篇幅所限,不能将所有调用过程都显现出来,学习STL还是得靠大家跟踪源码,才能有更深的体会。

参考:

C++ primer 第四版 Effective C++ 3rd C++编程规范

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2013-07-27 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
容器服务
腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档