图像不变性特征——hu矩

图像的hu矩是一种具有平移、旋转和尺度不变性的图像特征。

普通矩的计算: f(x,y)的p+q阶原点矩可以表示为:

而数字图像是一个二维的离散信号,对上述公式进行离散化之后:

其中C与R分别表示图像的列与行。

各阶矩的物理意义: 0阶矩(m00):目标区域的质量 1阶矩(m01,m10):目标区域的质心 2阶矩(m02,m11,m20):目标区域的旋转半径 3阶矩(m03,m12,m21,m30):目标区域的方位和斜度,反应目标的扭曲

但是目标区域往往伴随着空间变换(平移,尺度,旋转),所以需要在普通矩的基础上构造出具备不变性的矩组—hu矩。

中心矩:构造平移不变性 由零阶原点矩和一阶原点矩,我们可以求得目标区域的质心坐标:

由求得的质心坐标,我们可以构造出中心矩:

由于我们选择了以目标区域的质心为中心构建中心矩,那么矩的计算时永远是目标区域中的点相对于目标区域的质心,而与目标区域的位置无关,及具备了平移不变性。

归一化中心矩:构造尺度不变性

为抵消尺度变化对中心矩的影响,利用零阶中心矩u00对各阶中心距进行归一化处理,得到归一化中心矩:

由上文可知,零阶矩表示目标区域的质量(面积),那么如果目标区域的尺度发生变化(缩小2倍),显然其零阶中心矩也会相应变小,使得矩具备尺度不变性。

hu矩:构造旋转不变性 利用二阶和三阶规格中心矩可以导出下面7个不变矩组(Φ1 Φ7),它们在图像平移、旋转和比例变化时保持不变。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器学习算法与理论

无监督:聚类与改进聚类详解

聚类: 聚类就是将相似的对象聚在一起的过程。如总统大选,选择那部分容易转换立场的表决者,进行针对性的宣传,可以扭转局势。 聚类将相似的对象归到同一簇中,相似...

29010
来自专栏瓜大三哥

图像配准

图像配准(Image registration)是将同一场景拍摄的不同图像进行对齐的技术,即找到图像之间的点对点映射关系,或者对某种感兴趣的特征建立关联。以同...

2009
来自专栏机器之心

深度 | 级联MobileNet-V2实现人脸关键点检测(附训练源码)

机器之心投稿 作者:余霆嵩 为了能在移动端进行实时的人脸关键点检测,本实验采用最新的轻量化模型——MobileNet-V2 作为基础模型,在 CelebA 数据...

5385
来自专栏SIGAI学习与实践平台

场景文本检测—CTPN算法介绍

原创声明:本文为 SIGAI 原创文章,仅供个人学习使用,未经允许,不得转载,不能用于商业目的。

6.5K6
来自专栏生信小驿站

无监督学习 聚类分析③

可以看到有16个指标支持最佳聚类数目为3,5个指标支持聚类数为2,所以该方法推荐的最佳聚类数目为3.

894
来自专栏大数据挖掘DT机器学习

银行风控案例:Logistics模型预测银行贷款违约

在面试中会经常碰到考察对数据挖掘算法的熟悉程度,面试官会出一道题或给出一些数据,让你结合实际谈谈你选择什么模型,该模型的大致原理是什么,使用条件有哪些,模型优缺...

48512
来自专栏机器学习算法工程师

全面解读Group Normbalization-(吴育昕-何凯明 重磅之作)

一句话概括,GroupNormbalization(GN)是一种新的深度学习归一化方式,可以替代BN。

1634
来自专栏人工智能

机器学习-从高频号码中预测出快递送餐与广告骚扰

由头 1、笔者最近在做机器学习嘛,上次发了一篇文章,这周发现有大问题,此次算是对上篇的补充与说明。 2、算法基本完成,在进行收尾的工作,今天共享给大家思路,涉及...

2035
来自专栏AI科技评论

干货 | 自从学了这个方法,深度学习再也不愁没钱买数据集了

深度学习大牛吴恩达曾经说过:做AI研究就像造宇宙飞船,除了充足的燃料之外,强劲的引擎也是必不可少的。假如燃料不足,则飞船就无法进入预定轨道。而引擎不够强劲,飞船...

3056
来自专栏智能算法

结合Scikit-learn介绍几种常用的特征选择方法(上)

特征选择(排序)对于数据科学家、机器学习从业者来说非常重要。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层结构,这对进一步改善模型...

1.1K6

扫码关注云+社区