HT for Web基于HTML5的图像操作(二)

上篇介绍了HT for Web采用HTML5 Canvas的getImageData和setImageData函数,通过颜色乘积实现的染色效果,本文将再次介绍另一种更为高效的实现方式,当然要实现的功能效果是完全一样的。这次我们依然基于HTML5技术,但采用Canvas的globalCompositeOperation属性进行各种blending效果:

各种globalCompositeOperation效果可参考https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Compositing 的说明,我们采用“multiply”和“destination-atop”这两种blending效果,通过以下三个步骤实现:

1、先以染色颜色填充图片大小的矩形区域

2、采用“multiply”进行drawImage的绘制,达到以下效果

3、最后一步采用“destination-atop”的globalCompositeOperation方式,再次drawImage,这次绘制效果将会抠出图片像素区域,剔除非图片部分,最终达到我们所要的染色效果图片:

所有代码如下

function createColorImage2(image, color) {
    var width = image.width;
    var height = image.height;                
    var canvas = document.createElement('canvas');
    var context = canvas.getContext( "2d" );
    canvas.width = width;
    canvas.height = height;
    context.fillStyle = color;    
    context.fillRect(0, 0, width, height);    
    context.globalCompositeOperation = "multiply";
    context.drawImage(image, 0, 0, width, height);
    context.globalCompositeOperation = "destination-atop";
    context.drawImage(image, 0, 0, width, height);
    return canvas;
};

至此我们有两种截然不同的绘制方式,两者的代码量差不多,该选择谁呢?让我们测试下两种实现方式的性能:

time = new Date().getTime();
for(var i=0; i<100; i++){
    createColorImage1(image, 'red');
}
console.log(new Date().getTime() - time);

time = new Date().getTime();
for(var i=0; i<100; i++){
    createColorImage2(image, 'red');
}
console.log(new Date().getTime() - time);

我在mac air的chrome浏览器下测试了以上代码,createColorImage1需要1630毫秒,createColorImage2需要29毫秒,两者相差56倍,也就是说采用globalCompositeOperation虽然进行了两次drawImage,但性能依然远高于通过getImageData逐个设置像素值的方式。

造成这种巨大差距的根本原因在于createColorImage1的方式完全基于CPU运算,js本就单线程,且密集数值运算也不是js的强项,而采用globalCompositeOperation的渲染方式,浏览器底层完全可以采用GPU等硬件加速的方式达到更加的性能,因此两钟方式性能差异几十倍也不足为奇了,有兴趣可参考微软的几篇关于浏览器Canvas硬件加速相关的文章:

http://blogs.msdn.com/b/ie/archive/2011/04/26/understanding-differences-in-hardware-acceleration-through-paintball.aspx

http://msdn.microsoft.com/en-us/hh562071.aspx

以上两种方式都是基于HTML5的Canvas的2D方式,其实更直接借助GPU的应该是Canvas的WebGL技术,下篇我们将介绍更好玩的基于WebGL的Shading Language的像素操作方式,当然使用HightopoHT for Web不需要关心这些底层技术细节,HT会自动选择最合适的染色机制,因为有些终端浏览器不支持globalCompositeOperation的功能,有些不支持WebGL的硬件加速,因此自动选择最合适的渲染机制也是需要底层框架足够智能化的。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏hightopo

基于HT for Web矢量实现2D叶轮旋转

912
来自专栏安富莱嵌入式技术分享

【二代示波器教程】第11章 示波器设计—功能模块划分

二代示波器的界面上做了五个按钮,分别用于不同功能的配置,本章节就为大家讲解这五个按钮实现的功能。

762
来自专栏mathor

枚举+优化(3)——哈希表优化实例

1455
来自专栏安富莱嵌入式技术分享

【安富莱二代示波器教程】第9章 示波器设计—自动触发和普通触发

自带触发和普通触发是示波器设计中比较重要的两个功能,本章节为大家讲解二代示波器中自动触发和普通触发的实现。

653
来自专栏河湾欢儿的专栏

css3过渡与动画

过渡 当触发的时候会有过渡的效果 1.transition-property:none|all|某一个属性值 2.transition-duration:...

601
来自专栏IMWeb前端团队

JavaScript强化教程——Prototype

本文为 H5EDU 机构官方 HTML5培训 教程,主要介绍:JavaScript强化教程 —— Prototype 引用 Prototype 如需测试 Jav...

1889
来自专栏阮一峰的网络日志

网页性能管理详解

你遇到过性能很差的网页吗? 这种网页响应非常缓慢,占用大量的CPU和内存,浏览起来常常有卡顿,页面的动画效果也不流畅。 ? 你会有什么反应?我猜想,大多数用户会...

2689
来自专栏HT

基于HTML5 Canvas 实现矢量工控风机叶轮旋转

之前在拓扑上的应用都是些静态的图元,今天我们将在拓扑上设计一个会动的图元——叶轮旋转。 先看看最后我们实现的效果:http://www.hightopo.com...

1928
来自专栏HT

基于HTML5 Canvas实现工控2D叶轮旋转

之前在拓扑上的应用都是些静态的图元,今天我们将在拓扑上设计一个会动的图元——叶轮旋转。 http://www.hightopo.com/guide/guide/...

1995
来自专栏JarvanMo的IT专栏

基于ExoPlayer的ExoPlayerVideoView

在Android设备中,播放视频和音乐是非常普遍的。Android框架提供了一个对于媒体的操作的最省代码的解决方案:MediaPlayer。它提供了低等级的媒体...

933

扫码关注云+社区