前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Brocade为何认为FC是NVMe over Fabric中最好的Fabric?

Brocade为何认为FC是NVMe over Fabric中最好的Fabric?

作者头像
企鹅号小编
发布2018-01-04 15:44:54
1.4K0
发布2018-01-04 15:44:54
举报

Brocade最近发表了对NVMe over Fabric理解和观点,认为FC Fabric相比以太网具有很多优势,并且FC聚焦数据中心数据传输和交换,具有更好的网络安全性。文章把Brocade的主要观点做了解析(文章全是干货,建议阅读前记得多喝水,易于消化),大家可以关注本公众号,在菜单底部回复关键字“Fcfabric”获取Brocade相关全文技术资料。

目前,基于SCSI的全闪存和混合阵列正成为数据中心的主流,但与此同时,一种为固态PCIe模块专门构建的非易失性存储器(NVMe)标准已经成为服务器连接Flash的一个新的高性能接口。NVMe通过低延迟和增强队列机制提供了更好的随机和连续性能,并增加了传统协议(如SAS)应用程序的并行性。

为了支持数据中心的网络存储,通过NVMe over Fabric实现NVMe标准在PCIe总线上的扩展,以此来挑战SCSI在SAN中的统治地位。NVMe over Fabric支持把NVMe映射到多个Fabrics传输选项,主要包括FC、InfiniBand、RoCE v2和iWARP

随着NVMe的发展和NVMe over Fabric技术商品化,在SAN市场,将NVMe定位为SCSI的替代方案,这也为Flash模块供应商打开一扇门来应对这个新的市场。自然地,存储市场的新来者试图吹捧他们的技术有优势,然而,新技术的缺点可能没有受到太多关注。通过作者的分析,希望大家能对NVMe和NVMe over Fabrics技术有个综合全面的认识。

1、FC不但可以作为NVMe的Fabrics且更有优势

FC实际上是支持NVMe的一种fabrics选择。NVMe over fabric白皮书上概述了对NVMe支持的两种类型的fabrics,一个是RDMA和一个是使用FC。尽管一些竞争者会声称光纤通道不是合法的NVMe Fabric,但是NVM Express白皮书例证说明了这个问题。

同样,白皮书明确列出了光纤通道作为一个NVMe over Fabrics选择,也描述了理想的Fabrics需要具备可靠的、以Credit为基础的流量控制和交付机制。然而,基于Credit的流程控制机制是FC、InfiniBand和PCIe传输原生能力。基于Credit流控制不是以太网/ IP网络的一部分,所以,相比iWARP或RoCE的以太网Fabrics,FC实际上是NVMe更好的Fabrics选择。

2、RDMA也不是NVMe Fabric的关键

RDMA提倡者一般声称RDMA对设计好NVMe Fabric很重要。但在NVMe的白皮书中并没有把RDMA列为“理想”NVMe over Fabric的重要属性,也就是说RDMA除了只是一种实现NVMe Fabric的方法外,没有什么特别的。在博科看来,InfiniBand社区在RDMA有较大投入且与PCIe社区合作紧密,但是NVMe和NVMe over Fabric本身并不依赖于RDMA。

3、SCSI也不是唯一的FC Native协议

RDMA倡导者通常将NVMe over以太网/IP和FC的延迟时间进行比较(这就像比较把IP和以太网比较一样),由于NVMe是上层协议,光纤通道是链路层协议。完整的比较应该是把NVMe over以太网和SCSI over FC进行比较,如果描述正确的话,这才是一个有效的比较。现在,作为光纤通道专家也意识到一个问题,由于FC上承载SCSI叫光纤通道协议(FCP),所以不止一个新手错误地认为所有的FC通信都必须是FCP。但事实上FCP与FC不一样,FCP仅仅是一种FC-4(上层)协议,类似于FICON(大型机存储协议),可以通过FC传输。

常常产生的一个误解是NVMe首先被翻译成底层SCSI(FCP)之后才运行在FC上。这种误解很有可能是由同样的白皮书引起的,它告诉我们理想的NVMe传输应该允许客户端“直接发送和接收本地NVMe命令,无需使用诸SCSI如此类的转换层”。这句话本身这是有道理的,因为NVMe是延迟优化的,而转换层却会引入延迟。

实际上FC本身就可以运输NVMe,无需翻译和转化。NVMe over FC定义了一个新的上层FC-NVMe流量类型,它识别了特定于NVMe的帧。

FC-NVMe标准组织认为在FC上同时支持NVMe和SCSI会具有更大价值。FC-NVMe标准规定了NVMe over FC使用与FCP相同IO框架类型。FC作为多协议结构的长期使用和应用表明FC SAN同时支持SCSI和NVMe是非常可靠的。

4、如何看待SCSI到NVMe转换层对NVMe产生的影响?

NVMe fabric聚焦于最低延迟,NVMe over fabric的白皮书说明传输的一个理想方式是不需要翻译层,如果存在SCSI到NVMe转换就是次优的传输方式。在编写应用程序时,如果能直接使用NVMe,不但有效避免翻译步骤,还将避免了每IO引入的时钟周期。FC不需要转换翻译且支持Native NVMe。

与此同时,NVMe社区也意识到SCSI应用程序部署时,上层应用程序适配、兼容和SCSI到NVMe转换层的重要性。许多NVMe的潜在用户无法重新设计他们运行的应用程序,但希望能选择搬到NVMe基础设施之上,不依赖于它们的应用程序供应商重新设计。从这个角度来看,有一个转化翻译层作为一种选择对NVMe的采用和普及实际上是有益的。

值得庆幸的是,目前业界主流的HBA厂商都提供了从SCSI到 NVMe转换翻译的驱动程序,同时也提供Native NVMe能力支持原生支持NVMe over Fabric应用程序。

5、FC能否实现零拷贝(Zero Copy)功能?

IP堆栈当时被开发时,主要设计用于处理许多上层协议和许多层2网络,从令牌环到电话线,清晰的网络层划分对于互操作性有很好的意义,为了达到这个目的最好的选择是使用中间缓冲,使缓冲区复制公共数据。

在20世纪80年代早期,提供单副本复制(Single-Copy)也算是一个好的网络协议栈,网络接口卡(NIC)接收帧后,通过DMA技术将它们写到与网络堆栈相关联的DRAM缓冲区中,然后堆栈会决定哪个应用应该接受、继续处理帧数据,并把数据复制到应用对应的DRAM缓存区中。

在20世纪80年代中期,随着FC的生产,一切发生了变化。FC主要特点就是速度,所以为了达到优化的目前,FC允许芯片技术更复杂,FC/SCSI堆栈的层数更少,也放开了IP堆栈所面临的向后兼容性的限制。因此,FC实现一个适配器、驱动模型的堆栈架构,从而消除单一副本(Single-Copy)。

事实也确实如此,当应用程序请求存储IO时,应用程序以“逻辑地址范围”的形式指定一个缓冲区地址,然后将其转换为DMA的物理地址范围实现DMA传输。有时,一个逻辑范围将映射到多个物理块,因此HBA采用Scatter-Gather List (SGL)完成数据传输和保存。FC通过提供零拷贝(Zero-Copy)技术,支持DMA数据传输。RDMA通过从本地服务器传递Scatter-Gather List到远程服务器有效地将本地内存与远程服务器共享,使远程服务器可以直接读取或写入本地服务器的内存。

6、IP上的零拷贝(Zero-Copy)也不需要RDMA

由于RDMA越来越流行,因此在2007年将其扩展了到Internet Wide Area网络,从而形成RDMA协议(iWARP)标准。iWARP是建立在TCP之上的,传输协议使用确认和重传机制。TCP还采用一个“窗口”算法以避免传输超过了发送方和接收方之间的网络容量。

在Internet Engineering Task Force (IETF) Requests For Comment (RFCs 5040–5044)中,前一个RFC 5040中描述了RDMA如何使用Direct Data Placement (DDP)协议来实现FC和InfiniBand的零拷贝(Zero-Copy)效率,后一个RFC 5044标记了TCP中PDU对齐规范,有效地禁用了TCP 的“合并”行为,使得NIC更容易地处理接收的数据,提供DDP的硬件支持。

前面提到的RFCs为零拷贝(Zero-Copy)效率提供了基础,但是传统的NICs没有TCP处理功能。软件实现虽然提供了互操作性,但无法满足RDMA性能要求。为此,新的称为TCP Offload Engines (TOEs)的NICs卡就产生了,然而早期的TOEs都不适合iWARP,只有基于硬件实现DDP能力的RDMA使能TOEs才能提供类似FC一样的零拷贝(Zero-Copy)效果。

2009年前后,随着当时InfiniBand市场的低迷,NVMe获得了越来越多的关注,IETF的Transparent Interconnection of Lots of Links (TRILL) 和IEEE的 Data Center Bridging (DCB)获得发展动力并以太网成为无损的Fabric。其中TRILL是指除IEEE的生成树协议支持以外的任何以太网拓扑结构;DCB采用基于优先级的流量控制、增强的传输选择和数据中心桥接交换技术。

InfiniBand行业协会(IBTA)看到了一个机会,在新的技术领域利用其在RDMA方面的专业知识,因此,他们开发了RDMA over Converged Ethernet (RoCE)规范(Converged Ethernet就是早期的DCB)。就像iWARP需要专门的TOEs来实现零拷贝(Zero-Copy)效率一样,RoCE依赖于RDMA-enabled NICs (RNICs)实现这一能力。IBTA认为RoCE的性能比iWARP更高,并指出了TCP (iWARP)不是低延迟通信的理想协议。

因为以太网不提供类似TCP的可靠传输能力,RoCE标准是在更高层的协议堆栈中实现可靠性功能。在RoCE发布的时候,对IPv4地址有相关约束,对TRILL的2层以太网网络扩展能力也有很高要求。IBTA显然认为RoCE应该拥有交付大规模高性能RDMA所需的一切能力。

7、“可路由”的RoCE v2才是更好的RoCE

Hyper-Scale和软件定义的网络推崇者促使IBTA创建RoCE v2(有时会被称为“可路由的RoCE”),意在取代RoCE。不同于基于TCP的iWARP, RoCE v2运行在UDP之上没有缓慢启动的节流行为。当然,采用UDP意味着RoCEv2帧不兼容RoCEv1帧(尽管支持RoCEv2的RDMA-enable的NICs通常可以配置为使用RoCE v1格式)。因为基于UDP的 RoCEv2缺乏类似TCP的显式拥塞通知能力,所以IBTA指出通过支持IETF的ECN实现在UDP之上传输层的流控制。

本文来自企鹅号 - 架构师技术联盟媒体

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文来自企鹅号 - 架构师技术联盟媒体

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
大数据
全栈大数据产品,面向海量数据场景,帮助您 “智理无数,心中有数”!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档