前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >常见的七种排序算法解析

常见的七种排序算法解析

作者头像
CSDN技术头条
发布2018-02-06 18:04:01
6000
发布2018-02-06 18:04:01
举报
文章被收录于专栏:CSDN技术头条CSDN技术头条

01

选择排序

实现原理

首先从未排序序列中找到最小的元素,放置到排序序列的起始位置,然后从剩余的未排序序列中继续寻找最小元素,放置到已排序序列的末尾。所以称之为选择排序。

代码实现

案例分析

时间复杂度与空间复杂度

每次要找一遍最小值,最坏情况下找n次,这样的过程要执行n次,所以时间复杂度还是O(n^2)。空间复杂度是O(1)。

02

快速排序

实现原理

  • 在数据集之中,选择一个元素作为”基准”(pivot)。
  • 所有小于”基准”的元素,都移到”基准”的左边;所有大于”基准”的元素,都移到”基准”的右边。这个操作称为分区 (partition)。
  • 操作,分区操作结束后,基准元素所处的位置就是最终排序后它的位置。
  • 对”基准”左边和右边的两个子集,不断重复第一步和第二步,直到所有子集只剩下一个元素为止。

代码实现

案例分析

时间复杂度与空间复杂度

快速排序也是一个不稳定排序,平均时间复杂度是O(nlogn)。空间复杂度是O(logn)。

03

冒泡排序

实现原理

依次比较相邻的两个元素,如果第一个元素大于第二个元素就交换它们的位置。这样比较一轮之后,最大的元素就会跑到队尾。然后对未排序的序列重复这个过程,最终转换成有序序列。

代码实现

案例分析

以数组 arr = [3 4 2 8 0] 为例说明,加粗的数字表示每次循环要比较的两个数字:

第一次外循环

( 3 4 2 8 0 ) → ( 3 4 2 8 0 ), 4 > 3 位置不变 ( 3 4 2 8 0 ) → (3 2 4 8 0 ), 4 > 2 交换位置 ( 3 2 4 8 0 ) → ( 3 2 4 8 0 ), 8 > 4 位置不变 ( 3 2 4 8 0 ) → ( 3 2 4 0 8 ), 8 > 0 交换位置

第二次外循环(除开最后一个元素8,对剩余的序列)

( 3 2 4 0 8 ) → ( 2 3 4 0 8 ), 3 > 2 交换位置 ( 2 3 4 0 8 ) → ( 2 3 4 0 8 ), 4 > 3 位置不变 ( 2 3 4 0 8 ) → ( 2 3 0 4 8 ), 4 > 0 交换位置

第三次外循环(除开已经排序好的最后两个元素,对剩余的循环,直到剩余的序列为 1)

( 2 3 0 4 8 ) → ( 2 3 0 4 8 ),3 > 2 位置不变 (2 3 0 4 8 ) → (2 0 3 4 8 ),3 > 0 交换位置

第四次外循环(最后一次)

( 2 0 3 4 8 ) → (0 2 3 4 8 ),2 > 0 交换位置

时间复杂度与空间复杂度

由于我们要重复执行n次冒泡,每次冒泡要执行n次比较(实际是1到n的等差数列,也就是(a1 + an) * n / 2),也就是 O(n^2)。 空间复杂度是O(1)。

04

插入排序

实现原理

  • 认为第一个元素是排好序的,从第二个开始遍历。
  • 拿出当前元素的值,从排好序的序列中从后往前找。
  • 如果序列中的元素比当前元素大,就把它后移。直到找到一个小的。
  • 把当前元素放在这个小的后面(后面的比当前大,它已经被后移了)。

代码实现

原理图解

案例1

案例2

时间复杂度与空间复杂度

因为要选择n次,而且插入时最坏要比较n次,所以时间复杂度同样是O(n^2)。空间复杂度是O(1)。

05

希尔排序

实现原理

  • 先取一个正整数 d1(d1 < n),把全部记录分成 d1 个组,所有距离为 d1 的倍数的记录看成一组,然后在各组内进行插入排序
  • 然后取 d2(d2 < d1)
  • 重复上述分组和排序操作;直到取 di = 1(i >= 1) 位置,即所有记录成为一个组,最后对这个组进行插入排序。一般选 d1 约为 n/2,d2 为 d1 /2, d3 为 d2/2 ,…, di = 1。

代码实现

案例分析

假设有数组 array = [80, 93, 60, 12, 42, 30, 68, 85, 10],首先取 d1 = 4,将数组分为 4 组,如下图中相同颜色代表一组:

然后分别对 4 个小组进行插入排序,排序后的结果为:

然后,取 d2 = 2,将原数组分为 2 小组,如下图:

然后分别对 2 个小组进行插入排序,排序后的结果为:

最后,取 d3 = 1,进行插入排序后得到最终结果:

时间复杂度与空间复杂度

希尔排序的时间复杂度受步长的影响,平均时间复杂度是O(n log2 n),空间复杂度是O(1)。

06

归并排序

实现原理

  • 把 n 个记录看成 n 个长度为 l 的有序子表
  • 进行两两归并使记录关键字有序,得到 n/2 个长度为 2 的有序子表
  • 重复第 2 步直到所有记录归并成一个长度为 n 的有序表为止。

总而言之,归并排序就是使用递归,先分解数组为子数组,再合并数组。

代码实现

public static int[] mergeSort(int[] arr){ int[] temp =new int[arr.length]; internalMergeSort(arr, temp, 0, arr.length-1); return temp; } private static void internalMergeSort(int[] a, int[] b, int left, int right){ //当left==right的时,已经不需要再划分了 if (left<right){ int middle = (left+right)/2; internalMergeSort(a, b, left, middle); //左子数组 internalMergeSort(a, b, middle+1, right); //右子数组 mergeSortedArray(a, b, left, middle, right); //合并两个子数组 } } // 合并两个有序子序列 arr[left, ..., middle] 和 arr[middle+1, ..., right]。temp是辅助数组。 private static void mergeSortedArray(int arr[], int temp[], int left, int middle, int right){ int i=left; int j=middle+1; int k=0; while ( i<=middle && j<=right){ if (arr[i] <=arr[j]){ temp[k++] = arr[i++]; } else{ temp[k++] = arr[j++]; } } while (i <=middle){ temp[k++] = arr[i++]; } while ( j<=right){ temp[k++] = arr[j++]; } //把数据复制回原数组 for (i=0; i<k; ++i){ arr[left+i] = temp[i]; } }

案例分析

案例1

以数组 array = [4 2 8 3 5 1 7 6] 为例,首先将数组分为长度为 2 的子数组,并使每个子数组有序:

[4 2] [8 3] [5 1] [7 6] ↓ [2 4] [3 8] [1 5] [6 7]

然后再两两合并:

[2 4 3 8] [1 5 6 7] ↓ [2 3 4 8] [1 5 6 7]

最后将两个子数组合并:

[2 3 4 8 1 5 6 7] ↓ [1 2 3 4 5 6 7 8]

案例2

时间复杂度与空间复杂度

在合并数组过程中,实际的操作是当前两个子数组的长度,即2m。又因为打散数组是二分的,最终循环执行数是logn。所以这个算法最终时间复杂度是O(nlogn),空间复杂度是O(1)。

07

堆排序

实现原理

堆排序就是把最大堆堆顶的最大数取出,将剩余的堆继续调整为最大堆,再次将堆顶的最大数取出,这个过程持续到剩余数只有一个时结束。在堆中定义以下几种操作:

  • 最大堆调整(Max-Heapify):将堆的末端子节点作调整,使得子节点永远小于父节点
  • 创建最大堆(Build-Max-Heap):将堆所有数据重新排序,使其成为最大堆
  • 堆排序(Heap-Sort):移除位在第一个数据的根节点,并做最大堆调整的递归运算
  • Parent(i) = floor((i-1)/2),i 的父节点下标
  • Left(i) = 2i + 1,i 的左子节点下标
  • Right(i) = 2(i + 1),i 的右子节点下标

代码实现

/** * 堆排序 */ public static int[] heapSort(int[] arr) { // 将待排序的序列构建成一个大顶堆 for (int i = arr.length / 2; i >= 0; i--){ heapAdjust(arr, i, arr.length); } // 逐步将每个最大值的根节点与末尾元素交换,并且再调整二叉树,使其成为大顶堆 for (int i = arr.length - 1; i > 0; i--) { swap(arr, 0, i); // 将堆顶记录和当前未经排序子序列的最后一个记录交换 heapAdjust(arr, 0, i); // 交换之后,需要重新检查堆是否符合大顶堆,不符合则要调整 } return arr; } /** * 构建堆的过程 * @param arr 需要排序的数组 * @param i 需要构建堆的根节点的序号 * @param n 数组的长度 */ private static void heapAdjust(int[] arr, int i, int n) { int child; int father; for (father = arr[i]; leftChild(i) < n; i = child) { child = leftChild(i); // 如果左子树小于右子树,则需要比较右子树和父节点 if (child != n - 1 && arr[child] < arr[child + 1]) { child++; // 序号增1,指向右子树 } // 如果父节点小于孩子结点,则需要交换 if (father < arr[child]) { arr[i] = arr[child]; } else { break; // 大顶堆结构未被破坏,不需要调整 } } arr[i] = father; } // 获取到左孩子结点 private static int leftChild(int i) { return 2 * i + 1; } // 交换元素位置 private static void swap(int[] arr, int index1, int index2) { int tmp = arr[index1]; arr[index1] = arr[index2]; arr[index2] = tmp; }

案例分析

时间复杂度与空间复杂度

堆执行一次调整需要O(logn)的时间,在排序过程中需要遍历所有元素执行堆调整,所以最终时间复杂度是O(nlogn)。空间复杂度是O(1)。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2017-10-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 CSDN技术头条 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档