首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >tomcat源码解读四 tomcat中的processer

tomcat源码解读四 tomcat中的processer

作者头像
cfs
发布2018-03-08 15:30:52
1.2K0
发布2018-03-08 15:30:52
举报
文章被收录于专栏:编码小白编码小白

     Processor是一个接口,针对于不同协议下具有不同的具体实现类,其实现类的具体功能是处理http请求,主要是对协议进行解析,状态处理以及响应。然后起一个中间作用转发到 Adater,下面是其类的关系图

这里写图片描述
这里写图片描述

     其实现类中我们常用的http协议,所以一般是左边的部分,用红线标注

1.1 循环队列

protected static class RecycledProcessors<P extends Processor<S>, S> extends SynchronizedStack<Processor<S>> {

        private final transient AbstractConnectionHandler<S,P> handler;
        protected final AtomicInteger size = new AtomicInteger(0);

        public RecycledProcessors(AbstractConnectionHandler<S,P> handler) {
            this.handler = handler;
        }

        @SuppressWarnings("sync-override") // Size may exceed cache size a bit
        @Override
        public boolean push(Processor<S> processor) {
            //获取Processor能够缓存的大小
            int cacheSize = handler.getProtocol().getProcessorCache();
            boolean offer = cacheSize == -1 ? true : size.get() < cacheSize;
            //向栈中压入当前processor
            boolean result = false;
            if (offer) {
                result = super.push(processor);
                if (result) {
                    size.incrementAndGet();
                }
            }
            //取消当前processor实例的JMX
            if (!result) handler.unregister(processor);
            return result;
        }

        @SuppressWarnings("sync-override") // OK if size is too big briefly
        @Override
        public Processor<S> pop() {
            Processor<S> result = super.pop();
            if (result != null) {
                size.decrementAndGet();
            }
            return result;
        }

        @Override
        public synchronized void clear() {
            Processor<S> next = pop();
            while (next != null) {
                handler.unregister(next);
                next = pop();
            }
            super.clear();
            size.set(0);
        }
    }

     在讲述Processor的获取以及处理过程之前先看一个类,姑且命名为循环队列, 它主要是继承了SynchronizedStack这个栈(tomcat自己实现)里面实现了进栈出栈两种方法。

1.1 Processor的创建

这里写图片描述
这里写图片描述

     根据栈中执行的流程可以看出调用的是协议句柄的抽象类中的process方法,所以针对于四种模式其实现过程大致相同,具体代码如下:

 public SocketState process(SocketWrapper<S> wrapper,
                SocketStatus status) {
            //如果socketWrapper为空则证明不存在socket则直接将状态设置为CLOSED
            if (wrapper == null) {
                return SocketState.CLOSED;
            }
            //获取当前SocketWrapper实例对应的NIO通道
            S socket = wrapper.getSocket();
            if (socket == null) {
                //什么也不做 socket已经关闭
                return SocketState.CLOSED;
            }
            /**
             * 从connections中根据socket获取Processor,如果没有则在下面创建 connections句柄类型Map<S,Processor<S>>
             * 在以下情况下connections中存在值
             * 1.websocket中
             * 2.异步servlet
             * 3.发送文件
             * */
            Processor<S> processor = connections.get(socket);

            if (status == SocketStatus.DISCONNECT && processor == null) {
                // Nothing to do. Endpoint requested a close and there is no
                // longer a processor associated with this socket.
                return SocketState.CLOSED;
            }

            wrapper.setAsync(false);
            //标记当前线程是否是容器线程 set则是容器线程
            ContainerThreadMarker.set();
            /**
             *
             * 创建一个Http11NioProcessor 实例里面构造了request 和response成员变量
             * 各封装了一个InternalNioInputBuffer实例
             * 其中request中封装了成员属性名inputBuffer
             *    response中封装了成员属性名outputBuffer
             * */
            try {
                if (processor == null) {
                    processor = recycledProcessors.pop();
                }
                if (processor == null) {
                    processor = createProcessor();
                }

                initSsl(wrapper, processor);

                SocketState state = SocketState.CLOSED;

                Iterator<DispatchType> dispatches = null;
                do {
                    if (dispatches != null) {
                        // Associate the processor with the connection as
                        // these calls may result in a nested call to process()
                        connections.put(socket, processor);
                        DispatchType nextDispatch = dispatches.next();
                        if (processor.isUpgrade()) {
                            state = processor.upgradeDispatch(
                                    nextDispatch.getSocketStatus());
                        } else {
                            state = processor.asyncDispatch(
                                    nextDispatch.getSocketStatus());
                        }
                    } else if (processor.isComet()) {
                        state = processor.event(status);
                    } else if (processor.isUpgrade()) {
                        state = processor.upgradeDispatch(status);
                    } else if (status == SocketStatus.DISCONNECT) {
                        // Comet and upgrade need to see DISCONNECT but the
                        // others don't. NO-OP and let socket close.
                    } else if (processor.isAsync() || state == SocketState.ASYNC_END) {
                        state = processor.asyncDispatch(status);
                        if (state == SocketState.OPEN) {
                            // release() won't get called so in case this request
                            // takes a long time to process, remove the socket from
                            // the waiting requests now else the async timeout will
                            // fire
                            getProtocol().endpoint.removeWaitingRequest(wrapper);
                            // There may be pipe-lined data to read. If the data
                            // isn't processed now, execution will exit this
                            // loop and call release() which will recycle the
                            // processor (and input buffer) deleting any
                            // pipe-lined data. To avoid this, process it now.
                            state = processor.process(wrapper);
                        }
                    } else if (status == SocketStatus.OPEN_WRITE) {
                        // Extra write event likely after async, ignore
                        state = SocketState.LONG;
                    } else {
                        //这个是在第一次请求的时候执行
                        state = processor.process(wrapper);
                    }

                    //根据异步asyncStateMachine的状态设置Socket的状态
                    if (state != SocketState.CLOSED && processor.isAsync()) {
                        state = processor.asyncPostProcess();
                    }

                    if (state == SocketState.UPGRADING) {
                        // Get the HTTP upgrade handler
                        UpgradeToken upgradeToken = processor.getUpgradeToken();
                        HttpUpgradeHandler httpUpgradeHandler = upgradeToken.getHttpUpgradeHandler();
                        // Retrieve leftover input
                        ByteBuffer leftoverInput = processor.getLeftoverInput();
                        // Release the Http11 processor to be re-used
                        release(wrapper, processor, false, false);
                        // Create the upgrade processor
                        processor = createUpgradeProcessor(
                                wrapper, leftoverInput, upgradeToken);
                        // Mark the connection as upgraded
                        wrapper.setUpgraded(true);
                        // Associate with the processor with the connection
                        connections.put(socket, processor);
                        // Initialise the upgrade handler (which may trigger
                        // some IO using the new protocol which is why the lines
                        // above are necessary)
                        // This cast should be safe. If it fails the error
                        // handling for the surrounding try/catch will deal with
                        // it.
                        if (upgradeToken.getInstanceManager() == null) {
                            httpUpgradeHandler.init((WebConnection) processor);
                        } else {
                            ClassLoader oldCL = upgradeToken.getContextBind().bind(false, null);
                            try {
                                httpUpgradeHandler.init((WebConnection) processor);
                            } finally {
                                upgradeToken.getContextBind().unbind(false, oldCL);
                            }
                        }
                    }
                    if (getLog().isDebugEnabled()) {
                        getLog().debug("Socket: [" + wrapper +
                                "], Status in: [" + status +
                                "], State out: [" + state + "]");
                    }
                    if (dispatches == null || !dispatches.hasNext()) {
                        // Only returns non-null iterator if there are
                        // dispatches to process.
                        dispatches = wrapper.getIteratorAndClearDispatches();
                    }
                } while (state == SocketState.ASYNC_END ||
                        state == SocketState.UPGRADING ||
                        dispatches != null && state != SocketState.CLOSED);

                if (state == SocketState.LONG) {
                    // In the middle of processing a request/response. Keep the
                    // socket associated with the processor. Exact requirements
                    // depend on type of long poll
                    //异步在第一次处理的时候会将其设置到当前connections中去
                    connections.put(socket, processor);
                    longPoll(wrapper, processor);
                } else if (state == SocketState.OPEN) {
                    // In keep-alive but between requests. OK to recycle
                    // processor. Continue to poll for the next request.
                    connections.remove(socket);
                    release(wrapper, processor, false, true);
                } else if (state == SocketState.SENDFILE) {
                    // Sendfile in progress. If it fails, the socket will be
                    // closed. If it works, the socket either be added to the
                    // poller (or equivalent) to await more data or processed
                    // if there are any pipe-lined requests remaining.
                    connections.put(socket, processor);
                } else if (state == SocketState.UPGRADED) {
                    // Don't add sockets back to the poller if this was a
                    // non-blocking write otherwise the poller may trigger
                    // multiple read events which may lead to thread starvation
                    // in the connector. The write() method will add this socket
                    // to the poller if necessary.
                    if (status != SocketStatus.OPEN_WRITE) {
                        longPoll(wrapper, processor);
                    }
                } else {
                    // Connection closed. OK to recycle the processor. Upgrade
                    // processors are not recycled.
                    connections.remove(socket);
                    if (processor.isUpgrade()) {
                        UpgradeToken upgradeToken = processor.getUpgradeToken();
                        HttpUpgradeHandler httpUpgradeHandler = upgradeToken.getHttpUpgradeHandler();
                        InstanceManager instanceManager = upgradeToken.getInstanceManager();
                        if (instanceManager == null) {
                            httpUpgradeHandler.destroy();
                        } else {
                            ClassLoader oldCL = upgradeToken.getContextBind().bind(false, null);
                            try {
                                httpUpgradeHandler.destroy();
                            } finally {
                                try {
                                    instanceManager.destroyInstance(httpUpgradeHandler);
                                } catch (Throwable e) {
                                    ExceptionUtils.handleThrowable(e);
                                    getLog().error(sm.getString("abstractConnectionHandler.error"), e);
                                }
                                upgradeToken.getContextBind().unbind(false, oldCL);
                            }
                        }
                    } else {
                        release(wrapper, processor, true, false);
                    }
                }
                return state;
            } catch(java.net.SocketException e) {
                // SocketExceptions are normal
                getLog().debug(sm.getString(
                        "abstractConnectionHandler.socketexception.debug"), e);
            } catch (java.io.IOException e) {
                // IOExceptions are normal
                getLog().debug(sm.getString(
                        "abstractConnectionHandler.ioexception.debug"), e);
            }
            // Future developers: if you discover any other
            // rare-but-nonfatal exceptions, catch them here, and log as
            // above.
            catch (Throwable e) {
                ExceptionUtils.handleThrowable(e);
                // any other exception or error is odd. Here we log it
                // with "ERROR" level, so it will show up even on
                // less-than-verbose logs.
                getLog().error(
                        sm.getString("abstractConnectionHandler.error"), e);
            } finally {
                ContainerThreadMarker.clear();
            }

            // Make sure socket/processor is removed from the list of current
            // connections
            connections.remove(socket);
            // Don't try to add upgrade processors back into the pool
            if (processor !=null && !processor.isUpgrade()) {
                release(wrapper, processor, true, false);
            }
            return SocketState.CLOSED;
        }

     从代码中可以看出获取Processor共经过三种途径,首先在connections这个map根据socket找到对应的Processor实例,也许你会有疑惑socket为什么会相同,目前我知道的有基于长连接和Upgrade来实现的socket,这样就有效的保留其中的协议状态,以及部分请求数据。如果从其中并没有获取则在循环队列中获取(下文讲述循环队列),这相当于从栈中获取元素,这是因为当一个实例化后的Processor处理完之后,并不会回收,而是释放存入栈中供下次来可以直接进行使用,如果栈中不存在则自己再实例化一个。由这种方式可以看出其实例化跟浏览器的请求没有多大关系,在一次会话中可能使用不同的,在不同会话中也可能使用相同的Processor

1.3 Processor的释放

     在当前socket处理完之后,会将Processor给释放,在这里将其部分句柄给重置之后,然后就压入循环队列供下次使用,其具体处理过程在BIO NIO 和AIO中有所出入

 protected abstract void release(SocketWrapper<S> socket,
                Processor<S> processor, boolean socketClosing,
                boolean addToPoller);
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017年12月02日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
容器服务
腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档