教育研究如何跟上大数据时代

大数据时代的来临,为高等教育研究的范式转变带来了机会。

如何能有效地将巨量的数据资源转化为丰硕的教育研究成果,应用于改善教育的决策与实践,对教育研究界来说意义重大。而要实现这个目标,需要完成将数据资源转化为生产要素、合理搭配生产要素、高效完成研究生产、产品的转化与传播四个步骤。

第一步,资源转化为生产要素。

大数据被喻为“第三次浪潮”,其价值已得到商业领域的充分证实。然而,如何把沉睡的数据资源变成具有增值性的生产要素,是教育研究生产的预备步骤。

首先,作为生产要素的数据应具有明晰的价值性。大数据记录的既包括研究对象的实在行为,也包括他们的主观选择,显示了人们应然和实然的表现,且不再拘泥于以往的抽样方式,因为样本=全部。然而在大数据具有先天信效度优势的同时,还伴生着劣势,即数据虽具价值,但单位时间价值的含量可能有所不同。如两个小时的监控录像中也许有用的信息仅2-3秒。此刻,需要研究人员对问题进行明确的界定,并列明清晰、可计算的筛选标准,用以提取该研究需要的有价值数据,而其余的数据“尾矿”,应留存给其他研究者或相关部门挖掘。

其次,作为生产要素的数据可以被标准化。大数据时代要提高对混杂、无序数据的接纳程度,但这种接纳却是研究的大忌。中国人民大学应用统计科学中心主任赵彦云就曾表明,“指标不一致、指标口径不一致、时间不一致、空间不一致、指标体系不一致、分类不一致、编码不一致等,如此杂乱的数据库,基本上连常规的统计整理、统计描述和分析都无法做到。”研究者能做且该做的是,把非结构化信息进行一定标准化处理,将其变成可用于分析的数据,依此来建模并寻找因果关系。

再次,作为生产要素的数据应具有安全性。如各类骚扰短信和电话推荐教育信息让人不胜其烦,各国也多次出现叫停儿童发展数据的相关计划。那么用技术(如匿名化)与立法双重保护信息安全是数据用于研究的前提。

第二步,合理搭配生产要素。

期望在高等教育研究当中使用大数据,单纯投入数据显然是不够的,还需要匹配人力、物力和财力。

一方面,大数据时代最缺乏两类人才:数据科学家和跨学科的学者。大数据的优势在于数据科学家能用不同的算法呈现不同事物之间的相关联系——而这些事物往往不是同一领域或是直接符合我们主观预期的。新一代的教育研究学人需与数据科学家和其他学科专家合作,抑或是自己及时补充此类知识,以便于继续有说服力的探寻教育相关事务的因果联系,丰富人类的教育认知。

另一方面,大数据的运用需要硬件设施的匹配。云计算为存储和利用大数据提供了便利,却仍旧需要对维护与储存的平台系统进行支持。这部分器材造价不菲,且对环境也有一定要求,对巨量的教育数据搜集需要对应的财政投入保障。

第三步,高效完成研究生产。

一方面,研究应体现效率理念。在大数据的背景下,时间性显得格外重要——数据随时随地更新,科研数据的精度可更高,而延误的信息可能毫无价值。

另一方面,研究应呈现更准确的因果关系。大数据为我们展现了多种类型的相关关系,而研究者的责任在于从巨量的资料中挖掘更贴合实际、有说服力和实效的因果关系,厘清其间可能出现的干扰因素,让教育服务变得更精确,更符合个人发展需求。

此外,研究产生的应是更亲民的成品。所谓亲民,是指产品能用更鲜活、通俗、便捷的方式来提供,且产品本身更符合消费者的个人需求。大数据的优势就在于其可以充分地捕捉微观个体特征来进行分析,实现所谓的互动和可视化服务。未来的研究理应是服务友好型,而不再是板着脸说理论。

第四步,产品的转化与传播。

大数据时代不仅为研究者丰富了研究数据与题材,还为研究成果的转化与传播带来了便利。大数据让科研(知识产品)生产更具科学性,它使实践者在先验中成长,使决策者在自信中完善,不仅拓展了教育服务的机会,也改善了教育服务的质量。

但在不断肯定大数据改变我们的研究范式之时,我们也需要提前思考一些问题:大数据的实时更新、动态分析对整体形势的判断是否足够准确?会不会形成依赖而低估经验的价值?会不会消磨我们的创新力?我们的“学习自由”和“研究自由”被机器左右甚至决定?大数据的占据是否会引发新的社会不均等——固化甚至加深贫富差距?在数据处理技术差异大的情况下,大数据的公开是否可能危及国家安全?而到大数据发展到极致之时,大家的决策均享有并依据数据而行,这种动态的判别方式是否可能消解彼此的数据优势,而最终达到新的“数据对冲均衡”,到那时想取得先机还得回归经验。

见光明日报:教育研究如何跟上大数据时代

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏BestSDK

灵云推出情感语音SDK,男生瞬间拥有女神般魅惑声音!

虽然这个虚构出来的角色是由演员配音完成的,但却透露出一个真实的讯息——越接近真人说话水准和富有情感表现力的声音,越容易为大众所接受。

1144
来自专栏腾讯研究院的专栏

ISOC:人工智能与机器学习的政策建议

image.png 中国信息通信研究院与腾讯研究院AI联合课题组编译   蔡雄山 腾讯研究院法律研究中心副主任、首席研究员   曹建峰 腾讯研究...

17210
来自专栏钱塘大数据

重磅 | 工信部印发《新一代人工智能产业创新重点任务揭榜工作方案》(全文)

各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门,有关单位:

1083
来自专栏人工智能快报

机器人教师将进入小学教室

美国每日科学网(www.sciencedaily.com)刊文称,机器人教师已经走进了小学教室。 最近发表在开源杂志《计算神经科学前沿》(Frontiers i...

2937
来自专栏新智元

下一代计算:AI 的黄金时代

70 年代的电脑,80 年代的互联网,21世纪初期的智能手机,而现在我们窥见到尚未到来的未来的碎片。我们正处于多个(而不是一个)新时代的入口,智能手机之争...

2678
来自专栏云计算D1net

最受职场青睐的十大热门云计算技能盘点

Joe Roberts曾经是一名SaaS产品主管,现在他决定换一份工作,由于他在云计算领域从业多年,有着丰富的经验,所以他决定还将继续从事这方面的工作。 Rob...

2564
来自专栏华章科技

【深度】谷歌、百度、IBM,哪个适合作为你的 AI 和机器学习平台

Zdnet 网站推出机器学习平台横向比较系列文章,以下内容分析谷歌、百度和 IBM 三家大公司 AI 实力,以及是否适合作为你的机器学习平台。谷歌的机器学习平台...

774
来自专栏钱塘大数据

增强现实AR技术在工业制造五大应用模式

导读:近来,一款由日本电子游戏业巨头任天堂和美国软件开发公司Niantic联合开发的智能手机游戏“口袋妖怪Go”(英文名Pokemon Go)风靡全球,形成了一...

44613
来自专栏PPV课数据科学社区

2017年机器学习发展十大趋势预测,悲观还是现实?

来源:今日头条 概要:按照惯例,我们首先回顾机器学习技术在实际应用层面的发展历程 “分析时代”目前仍处于起步阶段,它为我们带来众多值得期待且为之兴奋的构想与承诺...

35210
来自专栏量子位

吴恩达放宽招聘条件:周工作时间减少20小时;中文流利加分

允中 发自 凹非寺 量子位 出品 | 公众号 QbitAI 好消息,成为大师门徒的门槛降低了~ 大约一周之前,吴恩达“finally”开始招聘。他发出的招聘贴中...

3644

扫码关注云+社区