教育研究如何跟上大数据时代

大数据时代的来临,为高等教育研究的范式转变带来了机会。

如何能有效地将巨量的数据资源转化为丰硕的教育研究成果,应用于改善教育的决策与实践,对教育研究界来说意义重大。而要实现这个目标,需要完成将数据资源转化为生产要素、合理搭配生产要素、高效完成研究生产、产品的转化与传播四个步骤。

第一步,资源转化为生产要素。

大数据被喻为“第三次浪潮”,其价值已得到商业领域的充分证实。然而,如何把沉睡的数据资源变成具有增值性的生产要素,是教育研究生产的预备步骤。

首先,作为生产要素的数据应具有明晰的价值性。大数据记录的既包括研究对象的实在行为,也包括他们的主观选择,显示了人们应然和实然的表现,且不再拘泥于以往的抽样方式,因为样本=全部。然而在大数据具有先天信效度优势的同时,还伴生着劣势,即数据虽具价值,但单位时间价值的含量可能有所不同。如两个小时的监控录像中也许有用的信息仅2-3秒。此刻,需要研究人员对问题进行明确的界定,并列明清晰、可计算的筛选标准,用以提取该研究需要的有价值数据,而其余的数据“尾矿”,应留存给其他研究者或相关部门挖掘。

其次,作为生产要素的数据可以被标准化。大数据时代要提高对混杂、无序数据的接纳程度,但这种接纳却是研究的大忌。中国人民大学应用统计科学中心主任赵彦云就曾表明,“指标不一致、指标口径不一致、时间不一致、空间不一致、指标体系不一致、分类不一致、编码不一致等,如此杂乱的数据库,基本上连常规的统计整理、统计描述和分析都无法做到。”研究者能做且该做的是,把非结构化信息进行一定标准化处理,将其变成可用于分析的数据,依此来建模并寻找因果关系。

再次,作为生产要素的数据应具有安全性。如各类骚扰短信和电话推荐教育信息让人不胜其烦,各国也多次出现叫停儿童发展数据的相关计划。那么用技术(如匿名化)与立法双重保护信息安全是数据用于研究的前提。

第二步,合理搭配生产要素。

期望在高等教育研究当中使用大数据,单纯投入数据显然是不够的,还需要匹配人力、物力和财力。

一方面,大数据时代最缺乏两类人才:数据科学家和跨学科的学者。大数据的优势在于数据科学家能用不同的算法呈现不同事物之间的相关联系——而这些事物往往不是同一领域或是直接符合我们主观预期的。新一代的教育研究学人需与数据科学家和其他学科专家合作,抑或是自己及时补充此类知识,以便于继续有说服力的探寻教育相关事务的因果联系,丰富人类的教育认知。

另一方面,大数据的运用需要硬件设施的匹配。云计算为存储和利用大数据提供了便利,却仍旧需要对维护与储存的平台系统进行支持。这部分器材造价不菲,且对环境也有一定要求,对巨量的教育数据搜集需要对应的财政投入保障。

第三步,高效完成研究生产。

一方面,研究应体现效率理念。在大数据的背景下,时间性显得格外重要——数据随时随地更新,科研数据的精度可更高,而延误的信息可能毫无价值。

另一方面,研究应呈现更准确的因果关系。大数据为我们展现了多种类型的相关关系,而研究者的责任在于从巨量的资料中挖掘更贴合实际、有说服力和实效的因果关系,厘清其间可能出现的干扰因素,让教育服务变得更精确,更符合个人发展需求。

此外,研究产生的应是更亲民的成品。所谓亲民,是指产品能用更鲜活、通俗、便捷的方式来提供,且产品本身更符合消费者的个人需求。大数据的优势就在于其可以充分地捕捉微观个体特征来进行分析,实现所谓的互动和可视化服务。未来的研究理应是服务友好型,而不再是板着脸说理论。

第四步,产品的转化与传播。

大数据时代不仅为研究者丰富了研究数据与题材,还为研究成果的转化与传播带来了便利。大数据让科研(知识产品)生产更具科学性,它使实践者在先验中成长,使决策者在自信中完善,不仅拓展了教育服务的机会,也改善了教育服务的质量。

但在不断肯定大数据改变我们的研究范式之时,我们也需要提前思考一些问题:大数据的实时更新、动态分析对整体形势的判断是否足够准确?会不会形成依赖而低估经验的价值?会不会消磨我们的创新力?我们的“学习自由”和“研究自由”被机器左右甚至决定?大数据的占据是否会引发新的社会不均等——固化甚至加深贫富差距?在数据处理技术差异大的情况下,大数据的公开是否可能危及国家安全?而到大数据发展到极致之时,大家的决策均享有并依据数据而行,这种动态的判别方式是否可能消解彼此的数据优势,而最终达到新的“数据对冲均衡”,到那时想取得先机还得回归经验。

见光明日报:教育研究如何跟上大数据时代

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CDA数据分析师

大数据AND机器学习:大数据是原材料,机器学习是原材料加工厂

导 读 大数据是原材料,机器学习是原材料加工厂,而新一代人工智能服务则是工厂出炉的产品被消费在越来越多的日常生活中。 在Deepmind和AlphaGo获得的...

17610
来自专栏机器之心

业界 | 作为百度AI技术的集大成者,最新升级的百度大脑3.0有何亮点?

大会现场,百度不仅分享了公司在 AI 技术、产品与平台等方面的研究成果与最新进展,还宣布了百度大脑的重磅升级,3.0 版本正式问世。

982
来自专栏机器之心

英国皇家学会百页报告:机器学习的力量与希望(豪华阵容参与完成)

选自:英国皇家学会 参与:机器之心编辑部 以机器学习为代表的人工智能技术是当下最为热门的技术研究方向之一,其被认为对经济、社会、科学等都会有颠覆性的重大影响。近...

3327
来自专栏企鹅号快讯

让工业智能接地气的那些事儿

提到工业智能,总绕不开“大数据”、“云计算”、“人工智能”这样几个关键词。其实还有一个关键词也非常重要,它能够将上述几个关键词穿连起来,让工业智能可以真正实现落...

1868
来自专栏数据科学与人工智能

【FinTech】Fintech机器学习,所有你必须知道的

金融世界处理统计数据和定量数字,使其成为机器学习(ML)的完美领域。 这种工程科学已经应用于医疗,旅游,媒体和零售等不同领域。

922
来自专栏罗超频道

如何让搜索引擎拥有“生命”?

在许多人看来搜索引擎只是一个检索工具,就像其他冷冰冰的科技产品一样。实际上,搜索引擎正在成为人人依赖的智能助手。它在拥有感知环境和自我学习的能力后,随着岁月流逝...

3705
来自专栏AI科技评论

深度丨CES现场采访联想CTO芮勇:我在联想做的 AI 项目,以及对人工智能的看法

AI 科技评论按:芮勇博士自 11 月初正式公布去联想担任 CTO 后很少公开发声,而在今日的 CES 2017 现场中,AI 科技评论等媒体对联想集团高级副总...

3587
来自专栏企鹅号快讯

Google发布会看图的人工智能,让它来评评你的照片拍得好不好

人工智能,能做什么? 对于一般用户来说,人工智能更多的只是在智能音箱、手机上的“智能助手”中出现。他们最大的用途,也只是为你打打电话、设置日程和管理家中的智能家...

1749
来自专栏灯塔大数据

原创译文 | 微软放大招!面部识别无歧视,Face API更加精准识别人类肤色

微软近日在博客文章中宣布了Face API的重大更新,它改进了面部识别平台识别不同人种性别的能力,此前,这一直是计算机视觉平台面临的挑战。

714
来自专栏量子位

独家 | 揭秘出行巨头Uber的机器学习平台与团队

李根 发自 凹非寺 量子位 报道 | 公众号 QbitAI ? 科技巨头加注人工智能仿佛是场竞赛。 前不久,Uber正式推出机器学习平台Michelangel...

3459

扫描关注云+社区