Go语言中的Array、Slice、Map和Set使用详解

Array(数组)

内部机制

在 Go 语言中数组是固定长度的数据类型,它包含相同类型的连续的元素,这些元素可以是内建类型,像数字和字符串,也可以是结构类型,元素可以通过唯一的索引值访问,从 0 开始。

数组是很有价值的数据结构,因为它的内存分配是连续的,内存连续意味着可是让它在 CPU 缓存中待更久,所以迭代数组和移动元素都会非常迅速。

数组声明和初始化

通过指定数据类型和元素个数(数组长度)来声明数组。

// 声明一个长度为5的整数数组 var array [5]int

一旦数组被声明了,那么它的数据类型跟长度都不能再被改变。如果你需要更多的元素,那么只能创建一个你想要长度的新的数组,然后把原有数组的元素拷贝过去。

Go 语言中任何变量被声明时,都会被默认初始化为各自类型对应的 0 值,数组当然也不例外。当一个数组被声明时,它里面包含的每个元素都会被初始化为 0 值。

一种快速创建和初始化数组的方法是使用数组字面值。数组字面值允许我们声明我们需要的元素个数并指定数据类型:

// 声明一个长度为5的整数数组 // 初始化每个元素 array := [5]int{7, 77, 777, 7777, 77777}

如果你把长度写成 ...,Go 编译器将会根据你的元素来推导出长度:

// 通过初始化值的个数来推导出数组容量 array := [...]int{7, 77, 777, 7777, 77777}

如果我们知道想要数组的长度,但是希望对指定位置元素初始化,可以这样:

// 声明一个长度为5的整数数组 // 为索引为1和2的位置指定元素初始化 // 剩余元素为0值 array := [5]int{1: 77, 2: 777}

使用数组

使用 [] 操作符来访问数组元素

array := [5]int{7, 77, 777, 7777, 77777} // 改变索引为2的元素的值 array[2] = 1

我们可以定义一个指针数组:

array := [5]*int{0: new(int), 1: new(int)}

// 为索引为0和1的元素赋值 *array[0] = 7 *array[1] = 77

在 Go 语言中数组是一个值,所以可以用它来进行赋值操作。一个数组可以被赋值给任意相同类型的数组:

var array1 [5]string array2 := [5]string{"Red", "Blue", "Green", "Yellow", "Pink"} array1 = array2

注意数组的类型同时包括数组的长度和可以被存储的元素类型,数组类型完全相同才可以互相赋值,比如下面这样就不可以:

var array1 [4]string array2 := [5]string{"Red", "Blue", "Green", "Yellow", "Pink"} array1 = array2

// 编译器会报错 Compiler Error: cannot use array2 (type [5]string) as type [4]string in assignment

拷贝一个指针数组实际上是拷贝指针值,而不是指针指向的值:

复制代码代码如下:

var array1 [3]*string array2 := [3]*string{new(string), new(string), new(string)} *array2[0] = "Red" *array2[1] = "Blue" *array2[2] = "Green"

array1 = array2 // 赋值完成后,两组指针数组指向同一字符串

多维数组

数组总是一维的,但是可以组合成多维的。多维数组通常用于有父子关系的数据或者是坐标系数据:

// 声明一个二维数组 var array [4][2]int

// 使用数组字面值声明并初始化 array := [4][2]int{{10, 11}, {20, 21}, {30, 31}, {40, 41}}

// 指定外部数组索引位置初始化 array := [4][2]int{1: {20, 21}, 3: {40, 41}}

// 同时指定内外部数组索引位置初始化 array := [4][2]int{1: {0: 20}, 3: {1: 41}}

同样通过 [] 操作符来访问数组元素:

var array [2][2]int

array[0][0] = 0 array[0][1] = 1 array[1][0] = 2 array[1][1] = 3

也同样的相同类型的多维数组可以相互赋值:

复制代码代码如下:

var array1 = [2][2]int var array2 = [2][2]int

array[0][0] = 0 array[0][1] = 1 array[1][0] = 2 array[1][1] = 3

array1 = array2

因为数组是值,我们可以拷贝单独的维:

var array3 [2]int = array1[1] var value int = array1[1][0]

在函数中传递数组

在函数中传递数组是非常昂贵的行为,因为在函数之间传递变量永远是传递值,所以如果变量是数组,那么意味着传递整个数组,即使它很大很大很大。。。

举个栗子,创建一个有百万元素的整形数组,在64位的机器上它需要8兆的内存空间,来看看我们声明它和传递它时发生了什么:

var array [1e6]int foo(array) func foo(array [1e6]int) { ... }

每一次 foo 被调用,8兆内存将会被分配在栈上。一旦函数返回,会弹栈并释放内存,每次都需要8兆空间。

Go 语言当然不会这么傻,有更好的方法来在函数中传递数组,那就是传递指向数组的指针,这样每次只需要分配8字节内存:

复制代码代码如下:

var array [1e6]int foo(&array) func foo(array *[1e6]int){ ... }

但是注意如果你在函数中改变指针指向的值,那么原始数组的值也会被改变。幸运的是 slice(切片)可以帮我们处理好这些问题,来一起看看。

Slice(切片)

内部机制和基础

slice 是一种可以动态数组,可以按我们的希望增长和收缩。它的增长操作很容易使用,因为有内建的 append 方法。我们也可以通过 relice 操作化简 slice。因为 slice 的底层内存是连续分配的,所以 slice 的索引,迭代和垃圾回收性能都很好。

slice 是对底层数组的抽象和控制。它包含 Go 需要对底层数组管理的三种元数据,分别是:

1.指向底层数组的指针 2.slice 中元素的长度 3.slice 的容量(可供增长的最大值)

创建和初始化

Go 中创建 slice 有很多种方法,我们一个一个来看。

第一个方法是使用内建的函数 make。当我们使用 make 创建时,一个选项是可以指定 slice 的长度: slice := make([]string, 5)

如果只指定了长度,那么容量默认等于长度。我们可以分别指定长度和容量:

slice := make([]int, 3, 5)

当我们分别指定了长度和容量,我们创建的 slice 就可以拥有一开始并没有访问的底层数组的容量。上面代码的 slice 中,可以访问3个元素,但是底层数组有5个元素。两个与长度不相干的元素可以被 slice 来用。新创建的 slice 同样可以共享底层数组和已存在的容量。

不允许创建长度大于容量的 slice:

slice := make([]int, 5, 3)

Compiler Error: len larger than cap in make([]int)

惯用的创建 slice 的方法是使用 slice 字面量。跟创建数组很类似,不过不用指定 []里的值。初始的长度和容量依赖于元素的个数:

// 创建一个字符串 slice // 长度和容量都是 5 slice := []string{"Red", "Blue", "Green", "Yellow", "Pink"}

在使用 slice 字面量创建 slice 时有一种方法可以初始化长度和容量,那就是初始化索引。下面是个例子:

// 创建一个字符串 slice // 初始化一个有100个元素的空的字符串 slice slice := []string{99: ""}

nil 和 empty slice

有的时候我们需要创建一个 nil slice,创建一个 nil slice 的方法是声明它但不初始化它:

var slice []int

创建一个 nil slice 是创建 slice 最基本的方法,很多标准库和内建函数都可以使用它。当我们想要表示一个并不存在的 slice 时它变得非常有用,比如一个返回 slice 的函数中发生异常的时候。

创建 empty slice 的方法就是声明并初始化一下:

// 使用 make 创建 silce := make([]int, 0)

// 使用 slice 字面值创建 slice := []int{}

empty slice 包含0个元素并且底层数组没有分配存储空间。当我们想要表示一个空集合时它很有用处,比如一个数据库查询返回0个结果。

不管我们用 nil slice 还是 empty slice,内建函数 append,len和cap的工作方式完全相同。

使用 slice

为一个指定索引值的 slice 赋值跟之前数组赋值的做法完全相同。改变单个元素的值使用 [] 操作符:

slice := []int{10, 20, 30, 40, 50} slice[1] = 25

我们可以在底层数组上对一部分数据进行 slice 操作,来创建一个新的 slice:

// 长度为5,容量为5 slice := []int{10, 20, 30, 40, 50}

// 长度为2,容量为4 newSlice := slice[1:3]

在 slice 操作之后我们得到了两个 slice,它们共享底层数组。但是它们能访问底层数组的范围却不同,newSlice 不能访问它头指针前面的值。

计算任意 new slice 的长度和容量可以使用下面的公式:

对于 slice[i:j] 和底层容量为 k 的数组 长度:j - i 容量:k - i

必须再次明确一下现在是两个 slice 共享底层数组,因此只要有一个 slice 改变了底层数组的值,那么另一个也会随之改变:

slice := []int{10, 20, 30, 40, 50} newSlice := slice[1:3] newSlice[1] = 35

改变 newSlice 的第二个元素的值,也会同样改变 slice 的第三个元素的值。

一个 slice 只能访问它长度范围内的索引,试图访问超出长度范围的索引会产生一个运行时错误。容量只可以用来增长,它只有被合并到长度才可以被访问:

slice := []int{10, 20, 30, 40, 50} newSlice := slice[1:3] newSlice[3] = 45

Runtime Exception: panic: runtime error: index out of range

容量可以被合并到长度里,通过内建的 append 函数。

slice 增长

slice 比 数组的优势就在于它可以按照我们的需要增长,我们只需要使用 append 方法,然后 Go 会为我们做好一切。

使用 append 方法时我们需要一个源 slice 和需要附加到它里面的值。当 append 方法返回时,它返回一个新的 slice,append 方法总是增长 slice 的长度,另一方面,如果源 slice 的容量足够,那么底层数组不会发生改变,否则会重新分配内存空间。

// 创建一个长度和容量都为5的 slice slice := []int{10, 20, 30, 40, 50}

// 创建一个新的 slice newSlice := slice[1:3]

// 为新的 slice append 一个值 newSlice = append(newSlice, 60)

因为 newSlice 有可用的容量,所以在 append 操作之后 slice 索引为 3 的值也变成了 60,之前说过这是因为 slice 和 newSlice 共享同样的底层数组。

如果没有足够可用的容量,append 函数会创建一个新的底层数组,拷贝已存在的值和将要被附加的新值:

复制代码代码如下:

// 创建长度和容量都为4的 slice slice := []int{10, 20, 30, 40}

// 附加一个新值到 slice,因为超出了容量,所以会创建新的底层数组 newSlice := append(slice, 50)

append 函数重新创建底层数组时,容量会是现有元素的两倍(前提是元素个数小于1000),如果元素个数超过1000,那么容量会以 1.25 倍来增长。

slice 的第三个索引参数

slice 还可以有第三个索引参数来限定容量,它的目的不是为了增加容量,而是提供了对底层数组的一个保护机制,以方便我们更好的控制 append 操作,举个栗子:

source := []string{"apple", "orange", "plum", "banana", "grape"}

// 接着我们在源 slice 之上创建一个新的 slice slice := source[2:3:4]

新创建的 slice 长度为 1,容量为 2,可以看出长度和容量的计算公式也很简单:

对于 slice[i:j:k] 或者 [2:3:4]

长度: j - i 或者 3 - 2 容量: k - i 或者 4 - 2

如果我们试图设置比可用容量更大的容量,会得到一个运行时错误:

复制代码代码如下:

slice := source[2:3:6]

Runtime Error: panic: runtime error: slice bounds out of range

限定容量最大的用处是我们在创建新的 slice 时候限定容量与长度相同,这样以后再给新的 slice 增加元素时就会分配新的底层数组,而不会影响原有 slice 的值:

复制代码代码如下:

source := []string{"apple", "orange", "plum", "banana", "grape"}

// 接着我们在源 slice 之上创建一个新的 slice // 并且设置长度和容量相同 slice := source[2:3:3]

// 添加一个新元素 slice = append(slice, "kiwi")

如果没有第三个索引参数限定,添加 kiwi 这个元素时就会覆盖掉 banana。

内建函数 append 是一个变参函数,意思就是你可以一次添加多个元素,比如:

s1 := []int{1, 2} s2 := []int{3, 4}

fmt.Printf("%v\n", append(s1, s2...))

Output: [1 2 3 4]

迭代 slice

slice 也是一种集合,所以可以被迭代,用 for 配合 range 来迭代:

slice := []int{10, 20, 30, 40, 50}

for index, value := range slice { fmt.Printf("Index: %d Value: %d\n", index, value) }

Output: Index: 0 Value: 10 Index: 1 Value: 20 Index: 2 Value: 30 Index: 3 Value: 40 Index: 4 Value: 50

当迭代时 range 关键字会返回两个值,第一个是索引值,第二个是索引位置值的拷贝。注意:返回的是值的拷贝而不是引用,如果我们把值的地址作为指针使用,会得到一个错误,来看看为啥:

slice := []int{10, 20, 30 ,40}

for index, value := range slice { fmt.Printf("Value: %d Value-Addr: %X ElemAddr: %X\n", value, &value, &slice[index]) }

Output: Value: 10 Value-Addr: 10500168 ElemAddr: 1052E100 Value: 20 Value-Addr: 10500168 ElemAddr: 1052E104 Value: 30 Value-Addr: 10500168 ElemAddr: 1052E108 Value: 40 Value-Addr: 10500168 ElemAddr: 1052E10C

value 变量的地址总是相同的因为它只是包含一个拷贝。如果想得到每个元素的真是地址可以使用 &slice[index]。

如果不需要索引值,可以使用 _ 操作符来忽略它:

slice := []int{10, 20, 30, 40}

for _, value := range slice { fmt.Printf("Value: %d\n", value) }

Output: Value: 10 Value: 20 Value: 30 Value: 40

range 总是从开始一次遍历,如果你想控制遍历的step,就用传统的 for 循环:

slice := []int{10, 20, 30, 40}

for index := 2; index < len(slice); index++ { fmt.Printf("Index: %d Value: %d\n", index, slice[index]) }

Output: Index: 2 Value: 30 Index: 3 Value: 40

同数组一样,另外两个内建函数 len 和 cap 分别返回 slice 的长度和容量。

多维 slice

也是同数组一样,slice 可以组合为多维的 slice:

复制代码代码如下:

slice := [][]int{{10}, {20, 30}}

需要注意的是使用 append 方法时的行为,比如我们现在对 slice[0] 增加一个元素:

复制代码代码如下:

slice := [][]int{{10}, {20, 30}} slice[0] = append(slice[0], 20)

那么只有 slice[0] 会重新创建底层数组,slice[1] 则不会。

在函数间传递 slice

在函数间传递 slice 是很廉价的,因为 slice 相当于是指向底层数组的指针,让我们创建一个很大的 slice 然后传递给函数调用它:

slice := make([]int, 1e6)

slice = foo(slice)

func foo(slice []int) []int { ... return slice }

Map

内部机制

map 是一种无序的键值对的集合。map 最重要的一点是通过 key 来快速检索数据,key 类似于索引,指向数据的值。

map 是一种集合,所以我们可以像迭代数组和 slice 那样迭代它。不过,map 是无序的,我们无法决定它的返回顺序,这是因为 map 是使用 hash 表来实现的。

map 的 hash 表包含了一个桶集合(collection of buckets)。当我们存储,移除或者查找键值对(key/value pair)时,都会从选择一个桶开始。在映射(map)操作过程中,我们会把指定的键值(key)传递给 hash 函数(又称散列函数)。hash 函数的作用是生成索引,索引均匀的分布在所有可用的桶上。hash 表算法详见:July的博客—从头到尾彻底解析 hash 表算法

创建和初始化

Go 语言中有多种方法创建和初始化 map。我们可以使用内建函数 make 也可以使用 map 字面值: // 通过 make 来创建 dict := make(map[string]int)

// 通过字面值创建 dict := map[string]string{"Red": "#da1337", "Orange": "#e95a22"}

使用字面值是创建 map 惯用的方法(为什么不使用make)。初始化 map 的长度依赖于键值对的数量。

map 的键可以是任意内建类型或者是 struct 类型,map 的值可以是使用 ==操作符的表达式。slice,function 和 包含 slice 的 struct 类型不可以作为 map 的键,否则会编译错误: dict := map[[]string]int{}

Compiler Exception: invalid map key type []string

使用 map

给 map 赋值就是指定合法类型的键,然后把值赋给键:

复制代码代码如下:

colors := map[string]string{} colors["Red"] = "#da1337"

如果不初始化 map,那么就会创建一个 nil map。nil map 不能用来存放键值对,否则会报运行时错误:

复制代码代码如下:

var colors map[string]string colors["Red"] = "#da1337"

Runtime Error: panic: runtime error: assignment to entry in nil map

测试 map 的键是否存在是 map 操作的重要部分,因为它可以让我们判断是否可以执行一个操作,或者是往 map 里缓存一个值。它也可以被用来比较两个 map 的键值对是否匹配或者缺失。

从 map 里检索一个值有两种选择,我们可以同时检索值并且判断键是否存在:

value, exists := colors["Blue"] if exists { fmt.Println(value) }

另一种选择是只返回值,然后判断是否是零值来确定键是否存在。但是只有你确定零值是非法值的时候这招才管用:

value := colors["Blue"] if value != "" { fmt.Println(value) }

当索引一个 map 取值时它总是会返回一个值,即使键不存在。上面的例子就返回了对应类型的零值。

迭代一个 map 和迭代数组和 slice 是一样的,使用 range 关键字,不过在迭代 map 时我们不使用 index/value 而使用 key/value 结构:

复制代码代码如下:

colors := map[string]string{ "AliceBlue": "#f0f8ff", "Coral": "#ff7F50", "DarkGray": "#a9a9a9", "ForestGreen": "#228b22", }

for key, value := range colors { fmt.Printf("Key: %s Value: %s\n", key, value) }

如果我们想要从 map 中移除一个键值对,使用内建函数 delete(要是也能返回移除是否成功就好了,哎。。。):

复制代码代码如下:

delete(colors, "Coral")

for key, value := range colors { fmt.Println("Key: %s Value: %s\n", key, value) }

在函数间传递 map

在函数间传递 map 不是传递 map 的拷贝。所以如果我们在函数中改变了 map,那么所有引用 map 的地方都会改变:

复制代码代码如下:

func main() { colors := map[string]string{ "AliceBlue": "#f0f8ff", "Coral": "#ff7F50", "DarkGray": "#a9a9a9", "ForestGreen": "#228b22", }

for key, value := range colors { fmt.Printf("Key: %s Value: %s\n", key, value) }

removeColor(colors, "Coral")

for key, value := range colors { fmt.Printf("Key: %s Value: %s\n", key, value) } }

func removeColor(colors map[string]string, key string) { delete(colors, key) }

执行会得到以下结果:

Key: AliceBlue Value: #F0F8FF Key: Coral Value: #FF7F50 Key: DarkGray Value: #A9A9A9 Key: ForestGreen Value: #228B22 Key: AliceBlue Value: #F0F8FF Key: DarkGray Value: #A9A9A9 Key: ForestGreen Value: #228B22

可以看出来传递 map 也是十分廉价的,类似 slice。

Set

Go 语言本身是不提供 set 的,但是我们可以自己实现它,下面就来试试:

复制代码代码如下:

package main

import( "fmt" "sync" )

type Set struct { m map[int]bool sync.RWMutex }

func New() *Set { return &Set{ m: map[int]bool{}, } }

func (s *Set) Add(item int) { s.Lock() defer s.Unlock() s.m[item] = true }

func (s *Set) Remove(item int) { s.Lock() s.Unlock() delete(s.m, item) }

func (s *Set) Has(item int) bool { s.RLock() defer s.RUnlock() _, ok := s.m[item] return ok }

func (s *Set) Len() int { return len(s.List()) }

func (s *Set) Clear() { s.Lock defer s.Unlock() s.m = map[int]bool{} }

func (s *Set) IsEmpty() bool { if s.Len() == 0 { return true } return false }

func (s *Set) List() []int { s.RLock() defer s.RUnlock() list := []int{} for item := range s.m { list = append(list, item) } return list }

func main() { // 初始化 s := New() s.Add(1) s.Add(1) s.Add(2)

s.Clear() if s.IsEmpty() { fmt.Println("0 item") } s.Add(1) s.Add(2) s.Add(3) if s.Has(2) { fmt.Println("2 does exist") } s.Remove(2) s.Remove(3) fmt.Println("list of all items", S.List()) }

注意我们只是使用了 int 作为键,你可以自己实现用 interface{} 作为键,做成更通用的 Set,另外,这个实现是线程安全的。

总结

1.数组是 slice 和 map 的底层结构。 2.slice 是 Go 里面惯用的集合数据的方法,map 则是用来存储键值对。 3.内建函数 make 用来创建 slice 和 map,并且为它们指定长度和容量等等。slice 和 map 字面值也可以做同样的事。 4.slice 有容量的约束,不过可以通过内建函数 append 来增加元素。 5.map 没有容量一说,所以也没有任何增长限制。 6.内建函数 len 可以用来获得 slice 和 map 的长度。 7.内建函数 cap 只能作用在 slice 上。 8.可以通过组合方式来创建多维数组和 slice。map 的值可以是 slice 或者另一个 map。slice 不能作为 map 的键。 9.在函数之间传递 slice 和 map 是相当廉价的,因为他们不会传递底层数组的拷贝。

原文发布于微信公众号 - Golang语言社区(Golangweb)

原文发表时间:2017-05-03

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏流媒体

STL(二)map/multimapmapmultimap

Map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键字的值)的数据 处理能力。由于这个特...

11930
来自专栏Golang语言社区

Go语言中的Array、Slice、Map和Set使用详解

Array(数组) 内部机制 在 Go 语言中数组是固定长度的数据类型,它包含相同类型的连续的元素,这些元素可以是内建类型,像数字和字符串,也可以是结构类型,元...

83050
来自专栏小樱的经验随笔

【Java学习笔记之一】java关键字及作用

Java关键字及其作用 一、 总览: 1 访问控制 2 private protected public 3 4 类,方法和变量修饰符 ...

34780
来自专栏用户2442861的专栏

python strip()函数

http://www.cnblogs.com/kaituorensheng/archive/2013/05/23/3096028.html

14220
来自专栏CVer

Python Numpy学习教程(一)Python篇

通知:这篇文章主要简单介绍Python的基本数据结构、容器、列表、字典、集合、元组、函数和类等知识点 Python Numpy学习教程 Author: ...

1K140
来自专栏代码世界

Python基础数据类型之int、bool、str

数据类型:int  bool  str  list  元祖  dict  集合 int:整数型,用于各种数学运算。 bool:只有两种,True和False,用...

34960
来自专栏Golang语言社区

Go语言中的Array、Slice、Map和Set使用详解

Array(数组) 内部机制 在 Go 语言中数组是固定长度的数据类型,它包含相同类型的连续的元素,这些元素可以是内建类型,像数字和字符串,也可以是结构类型,元...

36190
来自专栏猿人谷

C++ 模板学习

1. 模板的概念。 我们已经学过重载(Overloading),对重载函数而言,C++的检查机制能通过函数参数的不同及所属类的不同。正确的调用重载函数。例如,为...

263100
来自专栏玄魂工作室

Python黑帽编程2.5 函数

写了几节的基础知识,真心感觉有点力不从心。这块的内容说实话,看文档是最好的方式,本人的写作水平,真的是找不出更好的写法,头疼。简单带过和没写一样,写详细了和本系...

32540
来自专栏海天一树

小朋友学C++(20):内联函数

第(2)种方法比第(1)种方法,有三个优点: ① 阅读和理解函数 max 的调用,要比读一条等价的条件表达式并解释它的含义要容易得多 ② 如果需要做任何修改,修...

8420

扫码关注云+社区

领取腾讯云代金券