前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >用 Grid Search 对 SVM 进行调参

用 Grid Search 对 SVM 进行调参

作者头像
杨熹
发布2018-04-03 16:05:49
3.2K0
发布2018-04-03 16:05:49
举报
文章被收录于专栏:杨熹的专栏

上一次用了验证曲线来找最优超参数。

用验证曲线 validation curve 选择超参数

今天来看看网格搜索(grid search),也是一种常用的找最优超参数的算法。

网格搜索实际上就是暴力搜索:

首先为想要调参的参数设定一组候选值,然后网格搜索会穷举各种参数组合,根据设定的评分机制找到最好的那一组设置。


以支持向量机分类器 SVC 为例,用 GridSearchCV 进行调参:

代码语言:javascript
复制
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.svm import SVC

1. 导入数据集,分成 train 和 test 集:

代码语言:javascript
复制
digits = datasets.load_digits()

n_samples = len(digits.images)
X = digits.images.reshape((n_samples, -1))
y = digits.target

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.5, random_state=0)

2. 备选的参数搭配有下面两组,并分别设定一定的候选值:

例如我们用下面两个 grids:

kernel='rbf', gamma, 'C'

kernel='linear', 'C'

代码语言:javascript
复制
tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
                     'C': [1, 10, 100, 1000]},
                    {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]

3. 定义评分方法为:

代码语言:javascript
复制
scores = ['precision', 'recall']

4. 调用 GridSearchCV

SVC(), tuned_parameters, cv=5, 还有 scoring 传递进去,

用训练集训练这个学习器 clf,

再调用 clf.best_params_ 就能直接得到最好的参数搭配结果,

例如,在 precision 下,

返回最好的参数设置是:{'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}

还可以通过 clf.cv_results_ 的 'params','mean_test_score',看一下具体的参数间不同数值的组合后得到的分数是多少:

结果中可以看到最佳的组合的分数为:0.988 (+/-0.017)

还可以通过 classification_report 打印在测试集上的预测结果 clf.predict(X_test) 与真实值 y_test 的分数:

代码语言:javascript
复制
for score in scores:
    print("# Tuning hyper-parameters for %s" % score)
    print()

     # 调用 GridSearchCV,将 SVC(), tuned_parameters, cv=5, 还有 scoring 传递进去,
    clf = GridSearchCV(SVC(), tuned_parameters, cv=5,
                       scoring='%s_macro' % score)
    # 用训练集训练这个学习器 clf
    clf.fit(X_train, y_train)

    print("Best parameters set found on development set:")
    print()
    
    # 再调用 clf.best_params_ 就能直接得到最好的参数搭配结果
    print(clf.best_params_)
    
    print()
    print("Grid scores on development set:")
    print()
    means = clf.cv_results_['mean_test_score']
    stds = clf.cv_results_['std_test_score']
    
    # 看一下具体的参数间不同数值的组合后得到的分数是多少
    for mean, std, params in zip(means, stds, clf.cv_results_['params']):
        print("%0.3f (+/-%0.03f) for %r"
              % (mean, std * 2, params))
              
    print()

    print("Detailed classification report:")
    print()
    print("The model is trained on the full development set.")
    print("The scores are computed on the full evaluation set.")
    print()
    y_true, y_pred = y_test, clf.predict(X_test)
    
    # 打印在测试集上的预测结果与真实值的分数
    print(classification_report(y_true, y_pred))
    
    print()

相关阅读:

为什么要用交叉验证

用学习曲线 learning curve 来判别过拟合问题

用验证曲线 validation curve 选择超参数


推荐阅读 历史技术博文链接汇总

http://www.jianshu.com/p/28f02bb59fe5

也许可以找到你想要的:

入门问题深度学习神经网络自然语言处理

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017.06.27 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档