蒙特卡洛方法入门

蒙特卡洛方法入门

引言

蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡罗方法就已经存在。1777年,法国数学家布丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。这被认为是蒙特卡罗方法的起源。

蒙特卡罗方法是一种计算方法。原理是通过大量随机样本,去了解一个系统,进而得到所要计算的值。它非常强大和灵活,又相当简单易懂,很容易实现。对于许多问题来说,它往往是最简单的计算方法,有时甚至是唯一可行的方法。它诞生于上个世纪40年代美国的"曼哈顿计划",名字来源于赌城蒙特卡罗,象征概率。

1

π的计算

第一个例子是,如何用蒙特卡罗方法计算圆周率π。正方形内部有一个相切的圆,它们的面积之比是π/4。

现在,在这个正方形内部,随机产生10000个点(即10000个坐标对 (x, y)),计算它们与中心点的距离,从而判断是否落在圆的内部。

如果这些点均匀分布,那么圆内的点应该占到所有点的 π/4,因此将这个比值乘以4,就是π的值。通过R语言脚本随机模拟30000个点,π的估算值与真实值相差0.07%。

2

积分的计算

上面的方法加以推广,就可以计算任意一个积分的值。

比如,计算函数 y = x2 在 [0, 1] 区间的积分,就是求出下图红色部分的面积。

这个函数在 (1,1) 点的取值为1,所以整个红色区域在一个面积为1的正方形里面。在该正方形内部,产生大量随机点,可以计算出有多少点落在红色区域(判断条件 y < x2)。这个比重就是所要求的积分值。用Matlab模拟100万个随机点,结果为0.3328。

3

交通拥堵问题

蒙特卡罗方法不仅可以用于计算,还可以用于模拟系统内部的随机运动。下面的例子模拟单车道的交通堵塞。根据 Nagel-Schreckenberg 模型,车辆的运动满足以下规则。

■ 当前速度是 v 。 ■ 如果前面没车,它在下一秒的速度会提高到 v + 1 ,直到达到规定的最高限速。 ■ 如果前面有车,距离为d,且 d < v,那么它在下一秒的速度会降低到 d - 1 。 ■ 此外,司机还会以概率 p 随机减速, 将下一秒的速度降低到 v - 1 。

在一条直线上,随机产生100个点,代表道路上的100辆车,另取概率 p 为 0.3 。

上图中,横轴代表距离(从左到右),纵轴代表时间(从上到下),因此每一行就表示下一秒的道路情况。可以看到,该模型会随机产生交通拥堵(图形上黑色聚集的部分)。这就证明了,单车道即使没有任何原因,也会产生交通堵塞。

4

证券交易

证券市场有时交易活跃,有时交易冷清。下面是你对市场的预测。

■ 如果交易冷清,你会以平均价11元,卖出5万股。 ■ 如果交易活跃,你会以平均价8元,卖出10万股。 ■ 如果交易温和,你会以平均价10元,卖出7.5万股。

已知你的成本在每股5.5元到7.5元之间,平均是6.5元。请问接下来的交易,你的净利润会是多少?取1000个随机样本,每个样本有两个数值:一个是证券的成本(5.5元到7.5元之间的均匀分布),另一个是当前市场状态(冷清、活跃、温和,各有三分之一可能)。

模拟计算得到,平均净利润为92, 427美元。 参考

  • Introduction To Monte Carlo Methods,by Alex Woods
  • Monte Carlo Simulation Tutorial
  • 蒙特卡罗(Monte Carlo)方法简介,by 王晓勇
  • 蒙特卡罗(Monte Carlo)模拟的一个应用实例

原文发布于微信公众号 - 机器学习算法与Python学习(guodongwei1991)

原文发表时间:2016-12-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据文摘

21副GIF动图让你了解各种数学概念

1995
来自专栏AI2ML人工智能to机器学习

深度神经网络机器翻译

2013年,在Brandeis大学聆听薛念文老师(计算语言学领域引用率最高的华人之一, 下图居中, 薛老师右边是好友柏晓鹏和李斌)讨论小组研究语言模型的时候, ...

1053
来自专栏ATYUN订阅号

使用python中的Numpy进行t检验

虽然像SciPy和PyMC3这样的流行的统计数据库有预定义的函数来计算不同的测试,但是为了了解这个过程的数学原理,必须了解后台的运行。本系列将帮助你了解不同的统...

1K5
来自专栏数说工作室

金融数据挖掘之朴素贝叶斯

你和我之前的人生, 就像是来自同一个分布族的共轭曲线, 即使有各自的参数空间, 也注定要相识相念。 你和我之后的人生, 是我们相扶相持下不离不弃的最大似然, 用...

37310
来自专栏机器之心

解读 | 替代图灵测试?让人工智能参加数学和科学考试

SyncedReview 作者:Shixin Gu 参与:Joshua Chou、Chain Zhang、熊猫 图灵测试在过去很长一段时间里都被认为是一种衡量人...

42312
来自专栏量子位

超级变变变:喵星人汪星人还有街景神奇变身 | Paper+Code

夏乙 千平 发自猴姆 量子位 出品 | 公众号 QbitAI 只会卖萌的猫主子分分钟变身百兽之王? 白天能不能懂夜的黑? 你的汪星人如果是其他品种会是什么样? ...

4458
来自专栏专知

【NAACL2018最佳论文】忘掉Word2vec吧!艾伦人工智能研究院新词向量学习方法,一文了解各大奖项论文

【导读】当地时间6月1日到6月6日,第十六届自然语言处理顶级会议NAACL - HLT(Annual Conference of the North Ameri...

1053
来自专栏华章科技

再说深度学习是黑匣子,就把这篇文章糊 Ta 脸上

导语:可视化不只是画画那么简单,它或许是我们理解神经网络的世界的方法。PS:标题是作者说的,不是我说的,要打,就打他(逃

1433
来自专栏AI2ML人工智能to机器学习

深度学习名校课程大全

在吴恩达的最新《深度学习》课程里面, 鼻祖辛顿(参考“攒说 Geoff Hinton”)反复强调这是一场革命,或许不如第二次工业革命的影响力, 但是类似规模还是...

1213
来自专栏cloudskyme

一文搞懂HMM(隐马尔可夫模型)

什么是熵(Entropy) 简单来说,熵是表示物质系统状态的一种度量,用它老表征系统的无序程度。熵越大,系统越无序,意味着系统结构和运动的不确定和无规则;反之,...

4358

扫码关注云+社区

领取腾讯云代金券