前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >灰色理论预测模型

灰色理论预测模型

作者头像
Angel_Kitty
发布2018-04-08 16:03:47
2K0
发布2018-04-08 16:03:47
举报
文章被收录于专栏:小樱的经验随笔

灰色理论

通过对原始数据的处理挖掘系统变动规律,建立相应微分方程,从而预测事物未来发展状况。  优点:对于不确定因素的复杂系统预测效果较好,且所需样本数据较小;  缺点:基于指数率的预测没有考虑系统的随机性,中长期预测精度较差。

灰色预测模型

在多种因素共同影响且内部因素难以全部划定,因素间关系复杂隐蔽,可利用的数据情况少下可用,一般会加上修正因子使结果更准确。  灰色系统是指“部分信息已知,部分信息未知“的”小样本“,”贫信息“的不确定系统,以灰色模型(G,M)为核心的模型体系。

灰色预测模型建模机理

灰色系统理论是基于关联空间、光滑离散函数等概念,定义灰导数与会微分方程,进而用离散数据列建立微分方程形式的动态模型。

灰色预测模型实验

以sin(pi*x/20)函数为例,以单调性为区间检验灰色模型预测的精度 

通过实验可以明显地看出,灰色预测对于单调变化的序列预测精度较高,但是对波动变化明显的序列而言,灰色预测的误差相对比较大。究其原因,灰色预测模型通过AGO累加生成序列,在这个过程中会将不规则变动视为干扰,在累加运算中会过滤掉一部分变动,而且由累加生成灰指数律定理可知,当序列足够大时,存在级比为0.5的指数律,这就决定了灰色预测对单调变化预测具有很强的惯性,使得波动变化趋势不敏感。

本文所用测试代码:

代码语言:javascript
复制
clc
clear all
% 本程序主要用来计算根据灰色理论建立的模型的预测值。
% 应用的数学模型是 GM(1,1)。
% 原始数据的处理方法是一次累加法。
x=[0:1:10];
x1=[10:1:20];
x2=[0:1:20];
y=sin(pi*x/20);
n=length(y);
yy=ones(n,1);
yy(1)=y(1);
for i=2:n
    yy(i)=yy(i-1)+y(i);
end
B=ones(n-1,2);
for i=1:(n-1)
    B(i,1)=-(yy(i)+yy(i+1))/2;
    B(i,2)=1;
end
BT=B';
for j=1:n-1
    YN(j)=y(j+1);
end
YN=YN';
A=inv(BT*B)*BT*YN;
a=A(1);
u=A(2);
t=u/a;
t_test=5;  %需要预测个数
i=1:t_test+n;
yys(i+1)=(y(1)-t).*exp(-a.*i)+t;
yys(1)=y(1);
for j=n+t_test:-1:2
    ys(j)=yys(j)-yys(j-1);
end
x=1:n;
xs=2:n+t_test;
yn=ys(2:n+t_test);
det=0;
for i=2:n
    det=det+abs(yn(i)-y(i));
end
det=det/(n-1);

subplot(2,2,1),plot(x,y,'^r-',xs,yn,'b-o'),title('单调递增' ),legend('实测值','预测值');
disp(['百分绝对误差为:',num2str(det),'%']);
disp(['预测值为: ',num2str(ys(n+1:n+t_test))]);


%递减
y1=sin(pi*x1/20);
n1=length(y1);
yy1=ones(n1,1);
yy1(1)=y1(1);
for i=2:n1
    yy1(i)=yy1(i-1)+y1(i);
end
B1=ones(n1-1,2);
for i=1:(n1-1)
    B1(i,1)=-(yy1(i)+yy1(i+1))/2;
    B1(i,2)=1;
end
BT1=B1';
for j=1:n1-1
    YN1(j)=y1(j+1);
end
YN1=YN1';
A1=inv(BT1*B1)*BT1*YN1;
a1=A1(1);
u1=A1(2);
t1=u1/a1;
t_test1=5;  %需要预测个数
i=1:t_test1+n1;
yys1(i+1)=(y1(1)-t1).*exp(-a1.*i)+t1;
yys1(1)=y1(1);
for j=n1+t_test1:-1:2
    ys1(j)=yys1(j)-yys1(j-1);
end
x21=1:n1;
xs1=2:n1+t_test1;
yn1=ys1(2:n1+t_test1);
det1=0;
for i=2:n1
    det1=det1+abs(yn1(i)-y1(i));
end
det1=det1/(n1-1);

subplot(2,2,2),plot(x1,y1,'^r-',xs1,yn1,'b-o'),title('单调递增' ),legend('实测值','预测值');
disp(['百分绝对误差为:',num2str(det1),'%']);
disp(['预测值为: ',num2str(ys1(n1+1:n1+t_test1))]);

%整个区间
y2=sin(pi*x2/20);
n2=length(y2);
yy2=ones(n2,1);
yy2(1)=y2(1);
for i=2:n2
    yy2(i)=yy2(i-1)+y2(i);
end
B2=ones(n2-1,2);
for i=1:(n2-1)
    B2(i,1)=-(yy2(i)+yy2(i+1))/2;
    B2(i,2)=1;
end
BT2=B2';
for j=1:n2-1
    YN2(j)=y2(j+1);
end
YN2=YN2';
A2=inv(BT2*B2)*BT2*YN2;
a2=A2(1);
u2=A2(2);
t2=u2/a2;
t_test2=5;  %需要预测个数
i=1:t_test2+n2;
yys2(i+1)=(y2(1)-t2).*exp(-a2.*i)+t2;
yys2(1)=y2(1);
for j=n2+t_test2:-1:2
    ys2(j)=yys2(j)-yys2(j-1);
end
x22=1:n2;
xs2=2:n2+t_test2;
yn2=ys2(2:n2+t_test2);
det2=0;
for i=2:n2
    det2=det2+abs(yn2(i)-y2(i));
end
det2=det2/(n2-1);

subplot(2,1,2),plot(x2,y2,'^r-',xs2,yn2,'b-o'),title('全区间' ),legend('实测值','预测值');
disp(['百分绝对误差为:',num2str(det2),'%']);
disp(['预测值为: ',num2str(ys2(n2+1:n2+t_test2))]);
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017-04-17 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 灰色理论
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档