前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >ConcurrentHashMap源码解析(JDK1.8)

ConcurrentHashMap源码解析(JDK1.8)

作者头像
武培轩
发布2018-04-18 17:11:26
1.5K0
发布2018-04-18 17:11:26
举报
文章被收录于专栏:武培轩的专栏武培轩的专栏
代码语言:javascript
复制
package java.util.concurrent;

import java.io.ObjectStreamField;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.*;
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.locks.LockSupport;
import java.util.concurrent.locks.ReentrantLock;
import java.util.function.*;
import java.util.stream.Stream;


public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
        implements ConcurrentMap<K, V>, Serializable {
    private static final long serialVersionUID = 7249069246763182397L;


    /* ---------------- Constants -------------- */

    /**
     * node数组最大容量
     */
    private static final int MAXIMUM_CAPACITY = 1 << 30;


    /**
     * 默认初始值,必须是2的幂数
     */
    private static final int DEFAULT_CAPACITY = 16;

    /**
     * 数组可能最大值,需要与toArray()相关方法关联
     */
    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    /**
     * 并发级别,遗留下来的,为兼容以前的版本
     */
    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;

    /**
     * 负载因子
     */
    private static final float LOAD_FACTOR = 0.75f;

    /**
     * 链表转树的阀值,如果table[i]下面的链表长度大于8时就转化为数
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * 树转链表的阀值,小于等于6是转为链表,仅在扩容tranfer时才可能树转链表
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * 在转变成树之前,还会有一次判断,只有键值对数量大于 64 才会发生转换。
     * 这是为了避免在哈希表建立初期,多个键值对恰好被放入了同一个链表中而导致不必要的转化。
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

    /**
     * Minimum number of rebinnings per transfer step. Ranges are
     * subdivided to allow multiple resizer threads.  This value
     * serves as a lower bound to avoid resizers encountering
     * excessive memory contention.  The value should be at least
     * DEFAULT_CAPACITY.
     */
    private static final int MIN_TRANSFER_STRIDE = 16;

    /**
     * The number of bits used for generation stamp in sizeCtl.
     * Must be at least 6 for 32bit arrays.
     */
    private static int RESIZE_STAMP_BITS = 16;

    /**
     * 2^15-1,help resize的最大线程数
     */
    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;

    /**
     * 32-16=16,sizeCtl中记录size大小的偏移量
     */
    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;

    /*
     * Encodings for Node hash fields. See above for explanation.
     */
    static final int MOVED = -1; // hash for forwarding nodes (forwarding nodes的hash值)、标示位
    static final int TREEBIN = -2; // hash值是-2  表示这是一个TreeBin节点
    static final int RESERVED = -3; // hash for transient reservations
    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash (ReservationNode的hash值)

    /**
     * 可用处理器数量
     */
    static final int NCPU = Runtime.getRuntime().availableProcessors();

    /**
     * For serialization compatibility.
     */
    private static final ObjectStreamField[] serialPersistentFields = {
            new ObjectStreamField("segments", Segment[].class),
            new ObjectStreamField("segmentMask", Integer.TYPE),
            new ObjectStreamField("segmentShift", Integer.TYPE)
    };

    /* ---------------- Nodes -------------- */

    /**
     * Node是最核心的内部类,它包装了key-value键值对,所有插入ConcurrentHashMap的数据都包装在这里面。
     * 它与HashMap中的定义很相似,但是但是有一些差别,它对value和next属性设置了volatile同步锁,
     * 它不允许调用setValue方法直接改变Node的value域,它增加了find方法辅助map.get()方法。
     */
    static class Node<K, V> implements Map.Entry<K, V> {
        final int hash;
        final K key;
        //val和next都会在扩容时发生变化,所以加上volatile来保持可见性和禁止重排序
        volatile V val;
        volatile Node<K, V> next;

        Node(int hash, K key, V val, Node<K, V> next) {
            this.hash = hash;
            this.key = key;
            this.val = val;
            this.next = next;
        }

        public final K getKey() {
            return key;
        }

        public final V getValue() {
            return val;
        }

        /**
         * HashMap中Node类的hashCode()方法中的代码为:Objects.hashCode(key) ^ Objects.hashCode(value)
         * 而Objects.hashCode(key)最终也是调用了 key.hashCode(),但是效果一样
         */
        public final int hashCode() {
            return key.hashCode() ^ val.hashCode();
        }

        public final String toString() {
            return key + "=" + val;
        }

        //不允许直接改变value的值
        public final V setValue(V value) {
            throw new UnsupportedOperationException();
        }

        /**
         * HashMap使用if (o == this),且嵌套if;ConcurrentHashMap使用&&
         */
        public final boolean equals(Object o) {
            Object k, v, u;
            Map.Entry<?, ?> e;
            return ((o instanceof Map.Entry) &&
                    (k = (e = (Map.Entry<?, ?>) o).getKey()) != null &&
                    (v = e.getValue()) != null &&
                    (k == key || k.equals(key)) &&
                    (v == (u = val) || v.equals(u)));
        }

        /**
         * 增加find方法辅助get方法 ,HashMap中的Node类中没有此方法
         */
        Node<K, V> find(int h, Object k) {
            Node<K, V> e = this;
            if (k != null) {
                do {
                    K ek;
                    if (e.hash == h &&
                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
                        return e;
                } while ((e = e.next) != null);
            }
            return null;
        }
    }

    /* ---------------- Static utilities -------------- */

    /**
     * 对hashCode进行再散列,算法为(h ^ (h >>> 16)) & HASH_BITS
     */
    static final int spread(int h) {
        return (h ^ (h >>> 16)) & HASH_BITS;
    }

    /**
     * 返回大于等于count的最小的2的幂次方
     */
    private static final int tableSizeFor(int c) {
        int n = c - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    /**
     * Returns x's Class if it is of the form "class C implements
     * Comparable<C>", else null.
     */
    static Class<?> comparableClassFor(Object x) {
        if (x instanceof Comparable) {
            Class<?> c;
            Type[] ts, as;
            Type t;
            ParameterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
                return c;
            if ((ts = c.getGenericInterfaces()) != null) {
                for (int i = 0; i < ts.length; ++i) {
                    if (((t = ts[i]) instanceof ParameterizedType) &&
                            ((p = (ParameterizedType) t).getRawType() ==
                                    Comparable.class) &&
                            (as = p.getActualTypeArguments()) != null &&
                            as.length == 1 && as[0] == c) // type arg is c
                        return c;
                }
            }
        }
        return null;
    }

    /**
     * Returns k.compareTo(x) if x matches kc (k's screened comparable
     * class), else 0.
     */
    @SuppressWarnings({"rawtypes", "unchecked"}) // for cast to Comparable
    static int compareComparables(Class<?> kc, Object k, Object x) {
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable) k).compareTo(x));
    }

    /* ---------------- Table element access -------------- */

    /*
     * Volatile access methods are used for table elements as well as
     * elements of in-progress next table while resizing.  All uses of
     * the tab arguments must be null checked by callers.  All callers
     * also paranoically precheck that tab's length is not zero (or an
     * equivalent check), thus ensuring that any index argument taking
     * the form of a hash value anded with (length - 1) is a valid
     * index.  Note that, to be correct wrt arbitrary concurrency
     * errors by users, these checks must operate on local variables,
     * which accounts for some odd-looking inline assignments below.
     * Note that calls to setTabAt always occur within locked regions,
     * and so in principle require only release ordering, not
     * full volatile semantics, but are currently coded as volatile
     * writes to be conservative.
     */

    /**
     * 获得在i位置上的Node节点
     */
    @SuppressWarnings("unchecked")
    static final <K, V> Node<K, V> tabAt(Node<K, V>[] tab, int i) {
        return (Node<K, V>) U.getObjectVolatile(tab, ((long) i << ASHIFT) + ABASE);
    }

    /**
     * 利用CAS算法设置i位置上的Node节点(将c和table[i]比较,相同则插入v)。
     */
    static final <K, V> boolean casTabAt(Node<K, V>[] tab, int i,
                                         Node<K, V> c, Node<K, V> v) {
        return U.compareAndSwapObject(tab, ((long) i << ASHIFT) + ABASE, c, v);
    }

    /**
     * 利用volatile方法设置第i个节点的值,这个操作一定是成功的。
     */
    static final <K, V> void setTabAt(Node<K, V>[] tab, int i, Node<K, V> v) {
        U.putObjectVolatile(tab, ((long) i << ASHIFT) + ABASE, v);
    }

    /* ---------------- Fields -------------- */

    /**
     * 存放node的数组,大小是2的幂次方
     */
    transient volatile Node<K, V>[] table;

    /**
     * 扩容时用于存放数据的变量,扩容完成后会置为null。
     */
    private transient volatile Node<K, V>[] nextTable;

    /**
     * 记录容器的容量大小,通过CAS更新
     */
    private transient volatile long baseCount;

    /**
     * 负数代表正在进行初始化或扩容操作 ,其中-1代表正在初始化 ,-N 表示有N-1个线程正在进行扩容操作
     * 正数或0代表hash表还没有被初始化,这个数值表示初始化或下一次进行扩容的大小,类似于扩容阈值。
     * 它的值始终是当前ConcurrentHashMap容量的0.75倍,这与loadfactor是对应的。实际容量>=sizeCtl,则扩容。
     */
    private transient volatile int sizeCtl;//控制标识符

    /**
     * The next table index (plus one) to split while resizing.
     */
    private transient volatile int transferIndex;

    /**
     * 自旋锁 (锁定通过 CAS) 在调整大小和/或创建 CounterCells 时使用。
     * 在CounterCell类更新value中会使用,功能类似显示锁和内置锁,性能更好
     */
    private transient volatile int cellsBusy;

    /**
     * counter cell表,长度总为2的幂次
     */
    private transient volatile CounterCell[] counterCells;

    // views
    private transient KeySetView<K, V> keySet;
    private transient ValuesView<K, V> values;
    private transient EntrySetView<K, V> entrySet;


    /* ---------------- Public operations -------------- */

    /**
     * 默认的构造函数
     */
    public ConcurrentHashMap() {
    }

    /**
     * 指定容量的构造函数
     *
     * @param initialCapacity 初始化容量
     * @throws IllegalArgumentException if the initial capacity of
     *                                  elements is negative
     */
    public ConcurrentHashMap(int initialCapacity) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException();
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                MAXIMUM_CAPACITY :
                tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
        this.sizeCtl = cap;//初始化sizeCtl
    }

    /**
     * 创建与给定map具有相同映射的新map
     *
     * @param m the map
     */
    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
        this.sizeCtl = DEFAULT_CAPACITY;
        putAll(m);
    }

    /**
     * Creates a new, empty map with an initial table size based on
     * the given number of elements ({@code initialCapacity}) and
     * initial table density ({@code loadFactor}).
     *
     * @param initialCapacity 初始容量
     * @param loadFactor      负载因子,当容量达到initialCapacity*loadFactor时,执行扩容
     * @throws IllegalArgumentException if the initial capacity of
     *                                  elements is negative or the load factor is nonpositive
     * @since 1.6
     */
    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, 1);
    }

    /**
     * Creates a new, empty map with an initial table size based on
     * the given number of elements ({@code initialCapacity}), table
     * density ({@code loadFactor}), and number of concurrently
     * updating threads ({@code concurrencyLevel}).
     *
     * @param initialCapacity  初始容量
     * @param loadFactor       负载因子,当容量达到initialCapacity*loadFactor时,执行扩容
     * @param concurrencyLevel 预估的并发更新线程数
     * @throws IllegalArgumentException if the initial capacity is
     *                                  negative or the load factor or concurrencyLevel are
     *                                  nonpositive
     */
    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
            initialCapacity = concurrencyLevel;   // as estimated threads
        long size = (long) (1.0 + (long) initialCapacity / loadFactor);
        int cap = (size >= (long) MAXIMUM_CAPACITY) ?
                MAXIMUM_CAPACITY : tableSizeFor((int) size);
        this.sizeCtl = cap;
    }

    // Original (since JDK1.2) Map methods

    /**
     * {@inheritDoc}
     */
    public int size() {
        long n = sumCount();
        return ((n < 0L) ? 0 :
                (n > (long) Integer.MAX_VALUE) ? Integer.MAX_VALUE :
                        (int) n);
    }

    /**
     * {@inheritDoc}
     */
    public boolean isEmpty() {
        return sumCount() <= 0L; // ignore transient negative values
    }

    /**
     * 根据key在Map中找出其对应的value,如果不存在key,则返回null,
     * 其中key不允许为null,否则抛异常
     * 对于节点可能在链表或树上的情况,需要分别去查找
     *
     * @throws NullPointerException if the specified key is null
     */
    public V get(Object key) {
        Node<K, V>[] tab;
        Node<K, V> e, p;
        int n, eh;
        K ek;
        int h = spread(key.hashCode());//两次hash计算出hash值
        //根据hash值确定节点位置
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (e = tabAt(tab, (n - 1) & h)) != null) {
            // 搜索到的节点key与传入的key相同且不为null,直接返回这个节点
            if ((eh = e.hash) == h) {
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            } else if (eh < 0)//如果eh<0 说明这个节点在树上 直接寻找
                return (p = e.find(h, key)) != null ? p.val : null;
            //否则遍历链表 找到对应的值并返回
            while ((e = e.next) != null) {
                if (e.hash == h &&
                        ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }

    /**
     * 检查table中是否含有key
     *
     * @param key possible key
     * @return {@code true} if and only if the specified object
     * is a key in this table, as determined by the
     * {@code equals} method; {@code false} otherwise
     * @throws NullPointerException if the specified key is null
     */
    public boolean containsKey(Object key) {
        //直接调用get(int key)方法即可,如果有返回值,则说明是包含key的
        return get(key) != null;
    }

    /**
     * 检查在所有映射(k,v)中只要出现一次及以上的v==value,返回true
     * 这个方法可能需要完全遍历Map,因此比containsKey要慢的多
     *
     * @param value value whose presence in this map is to be tested
     * @return {@code true} if this map maps one or more keys to the
     * specified value
     * @throws NullPointerException if the specified value is null
     */
    public boolean containsValue(Object value) {
        if (value == null)
            throw new NullPointerException();
        Node<K, V>[] t;
        if ((t = table) != null) {
            Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
            for (Node<K, V> p; (p = it.advance()) != null; ) {
                V v;
                if ((v = p.val) == value || (v != null && value.equals(v)))
                    return true;
            }
        }
        return false;
    }

    /**
     * 直接调用putVal(key, value, false)方法
     *
     * @param key   key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with {@code key}, or
     * {@code null} if there was no mapping for {@code key}
     * @throws NullPointerException if the specified key or value is null
     */
    public V put(K key, V value) {
        return putVal(key, value, false);
    }

    /**
     * putVal方法可以分为以下几步:
     * 1、检查key/value是否为空,如果为空,则抛异常,否则进行2
     * 2、进入for死循环,进行3
     * 3、检查table是否初始化了,如果没有,则调用initTable()进行初始化然后进行 2,否则进行4
     * 4、根据key的hash值计算出其应该在table中储存的位置i,取出table[i]的节点用f表示。
     * 根据f的不同有如下三种情况:
     * 1)如果table[i]==null(即该位置的节点为空,没有发生碰撞),则利用CAS操作直接存储在该位置,如果CAS操作成功则退出死循环。
     * 2)如果table[i]!=null(即该位置已经有其它节点,发生碰撞),碰撞处理也有两种情况
     * 2.1)检查table[i]的节点的hash是否等于MOVED,如果等于,则检测到正在扩容,则帮助其扩容
     * 2.2)说明table[i]的节点的hash值不等于MOVED,如果table[i]为链表节点,则将此节点插入链表中即可
     * 如果table[i]为树节点,则将此节点插入树中即可。插入成功后,进行 5
     * 5、如果table[i]的节点是链表节点,则检查table的第i个位置的链表是否需要转化为数,如果需要则调用treeifyBin函数进行转化
     */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();// key和value不允许null
        int hash = spread(key.hashCode());//两次hash,减少hash冲突,可以均匀分布
        int binCount = 0;//i处结点标志,0: 未加入新结点, 2: TreeBin或链表结点数, 其它:链表结点数。主要用于每次加入结点后查看是否要由链表转为红黑树
        for (Node<K, V>[] tab = table; ; ) {//CAS经典写法,不成功无限重试
            Node<K, V> f;
            int n, i, fh;
            //检查是否初始化了,如果没有,则初始化
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            /**
             * i=(n-1)&hash 等价于i=hash%n(前提是n为2的幂次方).即取出table中位置的节点用f表示。 有如下两种情况:
             * 1、如果table[i]==null(即该位置的节点为空,没有发生碰撞),则利用CAS操作直接存储在该位置, 如果CAS操作成功则退出死循环。
             * 2、如果table[i]!=null(即该位置已经有其它节点,发生碰撞)
             */
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                if (casTabAt(tab, i, null,
                        new Node<K, V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            } else if ((fh = f.hash) == MOVED)//检查table[i]的节点的hash是否等于MOVED,如果等于,则检测到正在扩容,则帮助其扩容
                tab = helpTransfer(tab, f);
            else {//table[i]的节点的hash值不等于MOVED。
                V oldVal = null;
                // 针对首个节点进行加锁操作,而不是segment,进一步减少线程冲突
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K, V> e = f; ; ++binCount) {
                                K ek;
                                // 如果在链表中找到值为key的节点e,直接设置e.val = value即可
                                if (e.hash == hash &&
                                        ((ek = e.key) == key ||
                                                (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                // 如果没有找到值为key的节点,直接新建Node并加入链表即可
                                Node<K, V> pred = e;
                                if ((e = e.next) == null) {//插入到链表末尾并跳出循环
                                    pred.next = new Node<K, V>(hash, key,
                                            value, null);
                                    break;
                                }
                            }
                        } else if (f instanceof TreeBin) {// 如果首节点为TreeBin类型,说明为红黑树结构,执行putTreeVal操作
                            Node<K, V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K, V>) f).putTreeVal(hash, key,
                                    value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    // 如果节点数>=8,那么转换链表结构为红黑树结构
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);//若length<64,直接tryPresize,两倍table.length;不转红黑树
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        // 计数增加1,有可能触发transfer操作(扩容)
        addCount(1L, binCount);
        return null;
    }

    /**
     * Copies all of the mappings from the specified map to this one.
     * These mappings replace any mappings that this map had for any of the
     * keys currently in the specified map.
     *
     * @param m mappings to be stored in this map
     */
    public void putAll(Map<? extends K, ? extends V> m) {
        tryPresize(m.size());
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
            putVal(e.getKey(), e.getValue(), false);
    }

    /**
     * Removes the key (and its corresponding value) from this map.
     * This method does nothing if the key is not in the map.
     *
     * @param key the key that needs to be removed
     * @return the previous value associated with {@code key}, or
     * {@code null} if there was no mapping for {@code key}
     * @throws NullPointerException if the specified key is null
     */
    public V remove(Object key) {
        return replaceNode(key, null, null);
    }

    /**
     * Implementation for the four public remove/replace methods:
     * Replaces node value with v, conditional upon match of cv if
     * non-null.  If resulting value is null, delete.
     */
    final V replaceNode(Object key, V value, Object cv) {
        int hash = spread(key.hashCode());
        for (Node<K, V>[] tab = table; ; ) {
            Node<K, V> f;
            int n, i, fh;
            if (tab == null || (n = tab.length) == 0 ||
                    (f = tabAt(tab, i = (n - 1) & hash)) == null)
                break;
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                boolean validated = false;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            validated = true;
                            for (Node<K, V> e = f, pred = null; ; ) {
                                K ek;
                                if (e.hash == hash &&
                                        ((ek = e.key) == key ||
                                                (ek != null && key.equals(ek)))) {
                                    V ev = e.val;
                                    if (cv == null || cv == ev ||
                                            (ev != null && cv.equals(ev))) {
                                        oldVal = ev;
                                        if (value != null)
                                            e.val = value;
                                        else if (pred != null)
                                            pred.next = e.next;
                                        else
                                            setTabAt(tab, i, e.next);
                                    }
                                    break;
                                }
                                pred = e;
                                if ((e = e.next) == null)
                                    break;
                            }
                        } else if (f instanceof TreeBin) {
                            validated = true;
                            TreeBin<K, V> t = (TreeBin<K, V>) f;
                            TreeNode<K, V> r, p;
                            if ((r = t.root) != null &&
                                    (p = r.findTreeNode(hash, key, null)) != null) {
                                V pv = p.val;
                                if (cv == null || cv == pv ||
                                        (pv != null && cv.equals(pv))) {
                                    oldVal = pv;
                                    if (value != null)
                                        p.val = value;
                                    else if (t.removeTreeNode(p))
                                        setTabAt(tab, i, untreeify(t.first));
                                }
                            }
                        }
                    }
                }
                if (validated) {
                    if (oldVal != null) {
                        if (value == null)
                            addCount(-1L, -1);
                        return oldVal;
                    }
                    break;
                }
            }
        }
        return null;
    }

    /**
     * Removes all of the mappings from this map.
     */
    public void clear() {
        long delta = 0L; // negative number of deletions
        int i = 0;
        Node<K, V>[] tab = table;
        while (tab != null && i < tab.length) {
            int fh;
            Node<K, V> f = tabAt(tab, i);
            if (f == null)
                ++i;
            else if ((fh = f.hash) == MOVED) {
                tab = helpTransfer(tab, f);
                i = 0; // restart
            } else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node<K, V> p = (fh >= 0 ? f :
                                (f instanceof TreeBin) ?
                                        ((TreeBin<K, V>) f).first : null);
                        while (p != null) {
                            --delta;
                            p = p.next;
                        }
                        setTabAt(tab, i++, null);
                    }
                }
            }
        }
        if (delta != 0L)
            addCount(delta, -1);
    }

    /**
     * Returns a {@link Set} view of the keys contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa. The set supports element
     * removal, which removes the corresponding mapping from this map,
     * via the {@code Iterator.remove}, {@code Set.remove},
     * {@code removeAll}, {@code retainAll}, and {@code clear}
     * operations.  It does not support the {@code add} or
     * {@code addAll} operations.
     * <p>
     * <p>The view's iterators and spliterators are
     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
     * <p>
     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
     *
     * @return the set view
     */
    public KeySetView<K, V> keySet() {
        KeySetView<K, V> ks;
        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K, V>(this, null));
    }

    /**
     * Returns a {@link Collection} view of the values contained in this map.
     * The collection is backed by the map, so changes to the map are
     * reflected in the collection, and vice-versa.  The collection
     * supports element removal, which removes the corresponding
     * mapping from this map, via the {@code Iterator.remove},
     * {@code Collection.remove}, {@code removeAll},
     * {@code retainAll}, and {@code clear} operations.  It does not
     * support the {@code add} or {@code addAll} operations.
     * <p>
     * <p>The view's iterators and spliterators are
     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
     * <p>
     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
     * and {@link Spliterator#NONNULL}.
     *
     * @return the collection view
     */
    public Collection<V> values() {
        ValuesView<K, V> vs;
        return (vs = values) != null ? vs : (values = new ValuesView<K, V>(this));
    }

    /**
     * Returns a {@link Set} view of the mappings contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  The set supports element
     * removal, which removes the corresponding mapping from the map,
     * via the {@code Iterator.remove}, {@code Set.remove},
     * {@code removeAll}, {@code retainAll}, and {@code clear}
     * operations.
     * <p>
     * <p>The view's iterators and spliterators are
     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
     * <p>
     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
     *
     * @return the set view
     */
    public Set<Map.Entry<K, V>> entrySet() {
        EntrySetView<K, V> es;
        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K, V>(this));
    }

    /**
     * Returns the hash code value for this {@link Map}, i.e.,
     * the sum of, for each key-value pair in the map,
     * {@code key.hashCode() ^ value.hashCode()}.
     *
     * @return the hash code value for this map
     */
    public int hashCode() {
        int h = 0;
        Node<K, V>[] t;
        if ((t = table) != null) {
            Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
            for (Node<K, V> p; (p = it.advance()) != null; )
                h += p.key.hashCode() ^ p.val.hashCode();
        }
        return h;
    }

    /**
     * Returns a string representation of this map.  The string
     * representation consists of a list of key-value mappings (in no
     * particular order) enclosed in braces ("{@code {}}").  Adjacent
     * mappings are separated by the characters {@code ", "} (comma
     * and space).  Each key-value mapping is rendered as the key
     * followed by an equals sign ("{@code =}") followed by the
     * associated value.
     *
     * @return a string representation of this map
     */
    public String toString() {
        Node<K, V>[] t;
        int f = (t = table) == null ? 0 : t.length;
        Traverser<K, V> it = new Traverser<K, V>(t, f, 0, f);
        StringBuilder sb = new StringBuilder();
        sb.append('{');
        Node<K, V> p;
        if ((p = it.advance()) != null) {
            for (; ; ) {
                K k = p.key;
                V v = p.val;
                sb.append(k == this ? "(this Map)" : k);
                sb.append('=');
                sb.append(v == this ? "(this Map)" : v);
                if ((p = it.advance()) == null)
                    break;
                sb.append(',').append(' ');
            }
        }
        return sb.append('}').toString();
    }

    /**
     * Compares the specified object with this map for equality.
     * Returns {@code true} if the given object is a map with the same
     * mappings as this map.  This operation may return misleading
     * results if either map is concurrently modified during execution
     * of this method.
     *
     * @param o object to be compared for equality with this map
     * @return {@code true} if the specified object is equal to this map
     */
    public boolean equals(Object o) {
        if (o != this) {
            if (!(o instanceof Map))
                return false;
            Map<?, ?> m = (Map<?, ?>) o;
            Node<K, V>[] t;
            int f = (t = table) == null ? 0 : t.length;
            Traverser<K, V> it = new Traverser<K, V>(t, f, 0, f);
            for (Node<K, V> p; (p = it.advance()) != null; ) {
                V val = p.val;
                Object v = m.get(p.key);
                if (v == null || (v != val && !v.equals(val)))
                    return false;
            }
            for (Map.Entry<?, ?> e : m.entrySet()) {
                Object mk, mv, v;
                if ((mk = e.getKey()) == null ||
                        (mv = e.getValue()) == null ||
                        (v = get(mk)) == null ||
                        (mv != v && !mv.equals(v)))
                    return false;
            }
        }
        return true;
    }

    /**
     * Stripped-down version of helper class used in previous version,
     * declared for the sake of serialization compatibility
     */
    static class Segment<K, V> extends ReentrantLock implements Serializable {
        private static final long serialVersionUID = 2249069246763182397L;
        final float loadFactor;

        Segment(float lf) {
            this.loadFactor = lf;
        }
    }

    /**
     * Saves the state of the {@code ConcurrentHashMap} instance to a
     * stream (i.e., serializes it).
     *
     * @param s the stream
     * @throws java.io.IOException if an I/O error occurs
     * @serialData the key (Object) and value (Object)
     * for each key-value mapping, followed by a null pair.
     * The key-value mappings are emitted in no particular order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException {
        // For serialization compatibility
        // Emulate segment calculation from previous version of this class
        int sshift = 0;
        int ssize = 1;
        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
            ++sshift;
            ssize <<= 1;
        }
        int segmentShift = 32 - sshift;
        int segmentMask = ssize - 1;
        @SuppressWarnings("unchecked")
        Segment<K, V>[] segments = (Segment<K, V>[])
                new Segment<?, ?>[DEFAULT_CONCURRENCY_LEVEL];
        for (int i = 0; i < segments.length; ++i)
            segments[i] = new Segment<K, V>(LOAD_FACTOR);
        s.putFields().put("segments", segments);
        s.putFields().put("segmentShift", segmentShift);
        s.putFields().put("segmentMask", segmentMask);
        s.writeFields();

        Node<K, V>[] t;
        if ((t = table) != null) {
            Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
            for (Node<K, V> p; (p = it.advance()) != null; ) {
                s.writeObject(p.key);
                s.writeObject(p.val);
            }
        }
        s.writeObject(null);
        s.writeObject(null);
        segments = null; // throw away
    }

    /**
     * Reconstitutes the instance from a stream (that is, deserializes it).
     *
     * @param s the stream
     * @throws ClassNotFoundException if the class of a serialized object
     *                                could not be found
     * @throws java.io.IOException    if an I/O error occurs
     */
    private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
        /*
         * To improve performance in typical cases, we create nodes
         * while reading, then place in table once size is known.
         * However, we must also validate uniqueness and deal with
         * overpopulated bins while doing so, which requires
         * specialized versions of putVal mechanics.
         */
        sizeCtl = -1; // force exclusion for table construction
        s.defaultReadObject();
        long size = 0L;
        Node<K, V> p = null;
        for (; ; ) {
            @SuppressWarnings("unchecked")
            K k = (K) s.readObject();
            @SuppressWarnings("unchecked")
            V v = (V) s.readObject();
            if (k != null && v != null) {
                p = new Node<K, V>(spread(k.hashCode()), k, v, p);
                ++size;
            } else
                break;
        }
        if (size == 0L)
            sizeCtl = 0;
        else {
            int n;
            if (size >= (long) (MAXIMUM_CAPACITY >>> 1))
                n = MAXIMUM_CAPACITY;
            else {
                int sz = (int) size;
                n = tableSizeFor(sz + (sz >>> 1) + 1);
            }
            @SuppressWarnings("unchecked")
            Node<K, V>[] tab = (Node<K, V>[]) new Node<?, ?>[n];
            int mask = n - 1;
            long added = 0L;
            while (p != null) {
                boolean insertAtFront;
                Node<K, V> next = p.next, first;
                int h = p.hash, j = h & mask;
                if ((first = tabAt(tab, j)) == null)
                    insertAtFront = true;
                else {
                    K k = p.key;
                    if (first.hash < 0) {
                        TreeBin<K, V> t = (TreeBin<K, V>) first;
                        if (t.putTreeVal(h, k, p.val) == null)
                            ++added;
                        insertAtFront = false;
                    } else {
                        int binCount = 0;
                        insertAtFront = true;
                        Node<K, V> q;
                        K qk;
                        for (q = first; q != null; q = q.next) {
                            if (q.hash == h &&
                                    ((qk = q.key) == k ||
                                            (qk != null && k.equals(qk)))) {
                                insertAtFront = false;
                                break;
                            }
                            ++binCount;
                        }
                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
                            insertAtFront = false;
                            ++added;
                            p.next = first;
                            TreeNode<K, V> hd = null, tl = null;
                            for (q = p; q != null; q = q.next) {
                                TreeNode<K, V> t = new TreeNode<K, V>
                                        (q.hash, q.key, q.val, null, null);
                                if ((t.prev = tl) == null)
                                    hd = t;
                                else
                                    tl.next = t;
                                tl = t;
                            }
                            setTabAt(tab, j, new TreeBin<K, V>(hd));
                        }
                    }
                }
                if (insertAtFront) {
                    ++added;
                    p.next = first;
                    setTabAt(tab, j, p);
                }
                p = next;
            }
            table = tab;
            sizeCtl = n - (n >>> 2);
            baseCount = added;
        }
    }

    // ConcurrentMap methods

    /**
     * {@inheritDoc}
     *
     * @return the previous value associated with the specified key,
     * or {@code null} if there was no mapping for the key
     * @throws NullPointerException if the specified key or value is null
     */
    public V putIfAbsent(K key, V value) {
        return putVal(key, value, true);
    }

    /**
     * {@inheritDoc}
     *
     * @throws NullPointerException if the specified key is null
     */
    public boolean remove(Object key, Object value) {
        if (key == null)
            throw new NullPointerException();
        return value != null && replaceNode(key, null, value) != null;
    }

    /**
     * {@inheritDoc}
     *
     * @throws NullPointerException if any of the arguments are null
     */
    public boolean replace(K key, V oldValue, V newValue) {
        if (key == null || oldValue == null || newValue == null)
            throw new NullPointerException();
        return replaceNode(key, newValue, oldValue) != null;
    }

    /**
     * {@inheritDoc}
     *
     * @return the previous value associated with the specified key,
     * or {@code null} if there was no mapping for the key
     * @throws NullPointerException if the specified key or value is null
     */
    public V replace(K key, V value) {
        if (key == null || value == null)
            throw new NullPointerException();
        return replaceNode(key, value, null);
    }

    // Overrides of JDK8+ Map extension method defaults

    /**
     * Returns the value to which the specified key is mapped, or the
     * given default value if this map contains no mapping for the
     * key.
     *
     * @param key          the key whose associated value is to be returned
     * @param defaultValue the value to return if this map contains
     *                     no mapping for the given key
     * @return the mapping for the key, if present; else the default value
     * @throws NullPointerException if the specified key is null
     */
    public V getOrDefault(Object key, V defaultValue) {
        V v;
        return (v = get(key)) == null ? defaultValue : v;
    }

    public void forEach(BiConsumer<? super K, ? super V> action) {
        if (action == null) throw new NullPointerException();
        Node<K, V>[] t;
        if ((t = table) != null) {
            Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
            for (Node<K, V> p; (p = it.advance()) != null; ) {
                action.accept(p.key, p.val);
            }
        }
    }

    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
        if (function == null) throw new NullPointerException();
        Node<K, V>[] t;
        if ((t = table) != null) {
            Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
            for (Node<K, V> p; (p = it.advance()) != null; ) {
                V oldValue = p.val;
                for (K key = p.key; ; ) {
                    V newValue = function.apply(key, oldValue);
                    if (newValue == null)
                        throw new NullPointerException();
                    if (replaceNode(key, newValue, oldValue) != null ||
                            (oldValue = get(key)) == null)
                        break;
                }
            }
        }
    }

    /**
     * If the specified key is not already associated with a value,
     * attempts to compute its value using the given mapping function
     * and enters it into this map unless {@code null}.  The entire
     * method invocation is performed atomically, so the function is
     * applied at most once per key.  Some attempted update operations
     * on this map by other threads may be blocked while computation
     * is in progress, so the computation should be short and simple,
     * and must not attempt to update any other mappings of this map.
     *
     * @param key             key with which the specified value is to be associated
     * @param mappingFunction the function to compute a value
     * @return the current (existing or computed) value associated with
     * the specified key, or null if the computed value is null
     * @throws NullPointerException  if the specified key or mappingFunction
     *                               is null
     * @throws IllegalStateException if the computation detectably
     *                               attempts a recursive update to this map that would
     *                               otherwise never complete
     * @throws RuntimeException      or Error if the mappingFunction does so,
     *                               in which case the mapping is left unestablished
     */
    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
        if (key == null || mappingFunction == null)
            throw new NullPointerException();
        int h = spread(key.hashCode());
        V val = null;
        int binCount = 0;
        for (Node<K, V>[] tab = table; ; ) {
            Node<K, V> f;
            int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
                Node<K, V> r = new ReservationNode<K, V>();
                synchronized (r) {
                    if (casTabAt(tab, i, null, r)) {
                        binCount = 1;
                        Node<K, V> node = null;
                        try {
                            if ((val = mappingFunction.apply(key)) != null)
                                node = new Node<K, V>(h, key, val, null);
                        } finally {
                            setTabAt(tab, i, node);
                        }
                    }
                }
                if (binCount != 0)
                    break;
            } else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                boolean added = false;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K, V> e = f; ; ++binCount) {
                                K ek;
                                V ev;
                                if (e.hash == h &&
                                        ((ek = e.key) == key ||
                                                (ek != null && key.equals(ek)))) {
                                    val = e.val;
                                    break;
                                }
                                Node<K, V> pred = e;
                                if ((e = e.next) == null) {
                                    if ((val = mappingFunction.apply(key)) != null) {
                                        added = true;
                                        pred.next = new Node<K, V>(h, key, val, null);
                                    }
                                    break;
                                }
                            }
                        } else if (f instanceof TreeBin) {
                            binCount = 2;
                            TreeBin<K, V> t = (TreeBin<K, V>) f;
                            TreeNode<K, V> r, p;
                            if ((r = t.root) != null &&
                                    (p = r.findTreeNode(h, key, null)) != null)
                                val = p.val;
                            else if ((val = mappingFunction.apply(key)) != null) {
                                added = true;
                                t.putTreeVal(h, key, val);
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (!added)
                        return val;
                    break;
                }
            }
        }
        if (val != null)
            addCount(1L, binCount);
        return val;
    }

    /**
     * If the value for the specified key is present, attempts to
     * compute a new mapping given the key and its current mapped
     * value.  The entire method invocation is performed atomically.
     * Some attempted update operations on this map by other threads
     * may be blocked while computation is in progress, so the
     * computation should be short and simple, and must not attempt to
     * update any other mappings of this map.
     *
     * @param key               key with which a value may be associated
     * @param remappingFunction the function to compute a value
     * @return the new value associated with the specified key, or null if none
     * @throws NullPointerException  if the specified key or remappingFunction
     *                               is null
     * @throws IllegalStateException if the computation detectably
     *                               attempts a recursive update to this map that would
     *                               otherwise never complete
     * @throws RuntimeException      or Error if the remappingFunction does so,
     *                               in which case the mapping is unchanged
     */
    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (key == null || remappingFunction == null)
            throw new NullPointerException();
        int h = spread(key.hashCode());
        V val = null;
        int delta = 0;
        int binCount = 0;
        for (Node<K, V>[] tab = table; ; ) {
            Node<K, V> f;
            int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
                break;
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K, V> e = f, pred = null; ; ++binCount) {
                                K ek;
                                if (e.hash == h &&
                                        ((ek = e.key) == key ||
                                                (ek != null && key.equals(ek)))) {
                                    val = remappingFunction.apply(key, e.val);
                                    if (val != null)
                                        e.val = val;
                                    else {
                                        delta = -1;
                                        Node<K, V> en = e.next;
                                        if (pred != null)
                                            pred.next = en;
                                        else
                                            setTabAt(tab, i, en);
                                    }
                                    break;
                                }
                                pred = e;
                                if ((e = e.next) == null)
                                    break;
                            }
                        } else if (f instanceof TreeBin) {
                            binCount = 2;
                            TreeBin<K, V> t = (TreeBin<K, V>) f;
                            TreeNode<K, V> r, p;
                            if ((r = t.root) != null &&
                                    (p = r.findTreeNode(h, key, null)) != null) {
                                val = remappingFunction.apply(key, p.val);
                                if (val != null)
                                    p.val = val;
                                else {
                                    delta = -1;
                                    if (t.removeTreeNode(p))
                                        setTabAt(tab, i, untreeify(t.first));
                                }
                            }
                        }
                    }
                }
                if (binCount != 0)
                    break;
            }
        }
        if (delta != 0)
            addCount((long) delta, binCount);
        return val;
    }

    /**
     * Attempts to compute a mapping for the specified key and its
     * current mapped value (or {@code null} if there is no current
     * mapping). The entire method invocation is performed atomically.
     * Some attempted update operations on this map by other threads
     * may be blocked while computation is in progress, so the
     * computation should be short and simple, and must not attempt to
     * update any other mappings of this Map.
     *
     * @param key               key with which the specified value is to be associated
     * @param remappingFunction the function to compute a value
     * @return the new value associated with the specified key, or null if none
     * @throws NullPointerException  if the specified key or remappingFunction
     *                               is null
     * @throws IllegalStateException if the computation detectably
     *                               attempts a recursive update to this map that would
     *                               otherwise never complete
     * @throws RuntimeException      or Error if the remappingFunction does so,
     *                               in which case the mapping is unchanged
     */
    public V compute(K key,
                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (key == null || remappingFunction == null)
            throw new NullPointerException();
        int h = spread(key.hashCode());
        V val = null;
        int delta = 0;
        int binCount = 0;
        for (Node<K, V>[] tab = table; ; ) {
            Node<K, V> f;
            int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
                Node<K, V> r = new ReservationNode<K, V>();
                synchronized (r) {
                    if (casTabAt(tab, i, null, r)) {
                        binCount = 1;
                        Node<K, V> node = null;
                        try {
                            if ((val = remappingFunction.apply(key, null)) != null) {
                                delta = 1;
                                node = new Node<K, V>(h, key, val, null);
                            }
                        } finally {
                            setTabAt(tab, i, node);
                        }
                    }
                }
                if (binCount != 0)
                    break;
            } else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K, V> e = f, pred = null; ; ++binCount) {
                                K ek;
                                if (e.hash == h &&
                                        ((ek = e.key) == key ||
                                                (ek != null && key.equals(ek)))) {
                                    val = remappingFunction.apply(key, e.val);
                                    if (val != null)
                                        e.val = val;
                                    else {
                                        delta = -1;
                                        Node<K, V> en = e.next;
                                        if (pred != null)
                                            pred.next = en;
                                        else
                                            setTabAt(tab, i, en);
                                    }
                                    break;
                                }
                                pred = e;
                                if ((e = e.next) == null) {
                                    val = remappingFunction.apply(key, null);
                                    if (val != null) {
                                        delta = 1;
                                        pred.next =
                                                new Node<K, V>(h, key, val, null);
                                    }
                                    break;
                                }
                            }
                        } else if (f instanceof TreeBin) {
                            binCount = 1;
                            TreeBin<K, V> t = (TreeBin<K, V>) f;
                            TreeNode<K, V> r, p;
                            if ((r = t.root) != null)
                                p = r.findTreeNode(h, key, null);
                            else
                                p = null;
                            V pv = (p == null) ? null : p.val;
                            val = remappingFunction.apply(key, pv);
                            if (val != null) {
                                if (p != null)
                                    p.val = val;
                                else {
                                    delta = 1;
                                    t.putTreeVal(h, key, val);
                                }
                            } else if (p != null) {
                                delta = -1;
                                if (t.removeTreeNode(p))
                                    setTabAt(tab, i, untreeify(t.first));
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    break;
                }
            }
        }
        if (delta != 0)
            addCount((long) delta, binCount);
        return val;
    }

    /**
     * If the specified key is not already associated with a
     * (non-null) value, associates it with the given value.
     * Otherwise, replaces the value with the results of the given
     * remapping function, or removes if {@code null}. The entire
     * method invocation is performed atomically.  Some attempted
     * update operations on this map by other threads may be blocked
     * while computation is in progress, so the computation should be
     * short and simple, and must not attempt to update any other
     * mappings of this Map.
     *
     * @param key               key with which the specified value is to be associated
     * @param value             the value to use if absent
     * @param remappingFunction the function to recompute a value if present
     * @return the new value associated with the specified key, or null if none
     * @throws NullPointerException if the specified key or the
     *                              remappingFunction is null
     * @throws RuntimeException     or Error if the remappingFunction does so,
     *                              in which case the mapping is unchanged
     */
    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
        if (key == null || value == null || remappingFunction == null)
            throw new NullPointerException();
        int h = spread(key.hashCode());
        V val = null;
        int delta = 0;
        int binCount = 0;
        for (Node<K, V>[] tab = table; ; ) {
            Node<K, V> f;
            int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
                if (casTabAt(tab, i, null, new Node<K, V>(h, key, value, null))) {
                    delta = 1;
                    val = value;
                    break;
                }
            } else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K, V> e = f, pred = null; ; ++binCount) {
                                K ek;
                                if (e.hash == h &&
                                        ((ek = e.key) == key ||
                                                (ek != null && key.equals(ek)))) {
                                    val = remappingFunction.apply(e.val, value);
                                    if (val != null)
                                        e.val = val;
                                    else {
                                        delta = -1;
                                        Node<K, V> en = e.next;
                                        if (pred != null)
                                            pred.next = en;
                                        else
                                            setTabAt(tab, i, en);
                                    }
                                    break;
                                }
                                pred = e;
                                if ((e = e.next) == null) {
                                    delta = 1;
                                    val = value;
                                    pred.next =
                                            new Node<K, V>(h, key, val, null);
                                    break;
                                }
                            }
                        } else if (f instanceof TreeBin) {
                            binCount = 2;
                            TreeBin<K, V> t = (TreeBin<K, V>) f;
                            TreeNode<K, V> r = t.root;
                            TreeNode<K, V> p = (r == null) ? null :
                                    r.findTreeNode(h, key, null);
                            val = (p == null) ? value :
                                    remappingFunction.apply(p.val, value);
                            if (val != null) {
                                if (p != null)
                                    p.val = val;
                                else {
                                    delta = 1;
                                    t.putTreeVal(h, key, val);
                                }
                            } else if (p != null) {
                                delta = -1;
                                if (t.removeTreeNode(p))
                                    setTabAt(tab, i, untreeify(t.first));
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    break;
                }
            }
        }
        if (delta != 0)
            addCount((long) delta, binCount);
        return val;
    }

    // Hashtable legacy methods

    /**
     * Legacy method testing if some key maps into the specified value
     * in this table.  This method is identical in functionality to
     * {@link #containsValue(Object)}, and exists solely to ensure
     * full compatibility with class {@link java.util.Hashtable},
     * which supported this method prior to introduction of the
     * Java Collections framework.
     *
     * @param value a value to search for
     * @return {@code true} if and only if some key maps to the
     * {@code value} argument in this table as
     * determined by the {@code equals} method;
     * {@code false} otherwise
     * @throws NullPointerException if the specified value is null
     */
    public boolean contains(Object value) {
        return containsValue(value);
    }

    /**
     * Returns an enumeration of the keys in this table.
     *
     * @return an enumeration of the keys in this table
     * @see #keySet()
     */
    public Enumeration<K> keys() {
        Node<K, V>[] t;
        int f = (t = table) == null ? 0 : t.length;
        return new KeyIterator<K, V>(t, f, 0, f, this);
    }

    /**
     * Returns an enumeration of the values in this table.
     *
     * @return an enumeration of the values in this table
     * @see #values()
     */
    public Enumeration<V> elements() {
        Node<K, V>[] t;
        int f = (t = table) == null ? 0 : t.length;
        return new ValueIterator<K, V>(t, f, 0, f, this);
    }

    // ConcurrentHashMap-only methods

    /**
     * Returns the number of mappings. This method should be used
     * instead of {@link #size} because a ConcurrentHashMap may
     * contain more mappings than can be represented as an int. The
     * value returned is an estimate; the actual count may differ if
     * there are concurrent insertions or removals.
     *
     * @return the number of mappings
     * @since 1.8
     */
    public long mappingCount() {
        long n = sumCount();
        return (n < 0L) ? 0L : n; // ignore transient negative values
    }

    /**
     * Creates a new {@link Set} backed by a ConcurrentHashMap
     * from the given type to {@code Boolean.TRUE}.
     *
     * @param <K> the element type of the returned set
     * @return the new set
     * @since 1.8
     */
    public static <K> KeySetView<K, Boolean> newKeySet() {
        return new KeySetView<K, Boolean>
                (new ConcurrentHashMap<K, Boolean>(), Boolean.TRUE);
    }

    /**
     * Creates a new {@link Set} backed by a ConcurrentHashMap
     * from the given type to {@code Boolean.TRUE}.
     *
     * @param initialCapacity The implementation performs internal
     *                        sizing to accommodate this many elements.
     * @param <K>             the element type of the returned set
     * @return the new set
     * @throws IllegalArgumentException if the initial capacity of
     *                                  elements is negative
     * @since 1.8
     */
    public static <K> KeySetView<K, Boolean> newKeySet(int initialCapacity) {
        return new KeySetView<K, Boolean>
                (new ConcurrentHashMap<K, Boolean>(initialCapacity), Boolean.TRUE);
    }

    /**
     * Returns a {@link Set} view of the keys in this map, using the
     * given common mapped value for any additions (i.e., {@link
     * Collection#add} and {@link Collection#addAll(Collection)}).
     * This is of course only appropriate if it is acceptable to use
     * the same value for all additions from this view.
     *
     * @param mappedValue the mapped value to use for any additions
     * @return the set view
     * @throws NullPointerException if the mappedValue is null
     */
    public KeySetView<K, V> keySet(V mappedValue) {
        if (mappedValue == null)
            throw new NullPointerException();
        return new KeySetView<K, V>(this, mappedValue);
    }

    /* ---------------- Special Nodes -------------- */

    /**
     * A node inserted at head of bins during transfer operations.
     */
    static final class ForwardingNode<K, V> extends Node<K, V> {
        final Node<K, V>[] nextTable;

        ForwardingNode(Node<K, V>[] tab) {
            super(MOVED, null, null, null);
            this.nextTable = tab;
        }

        Node<K, V> find(int h, Object k) {
            // loop to avoid arbitrarily deep recursion on forwarding nodes
            outer:
            for (Node<K, V>[] tab = nextTable; ; ) {
                Node<K, V> e;
                int n;
                if (k == null || tab == null || (n = tab.length) == 0 ||
                        (e = tabAt(tab, (n - 1) & h)) == null)
                    return null;
                for (; ; ) {
                    int eh;
                    K ek;
                    if ((eh = e.hash) == h &&
                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
                        return e;
                    if (eh < 0) {
                        if (e instanceof ForwardingNode) {
                            tab = ((ForwardingNode<K, V>) e).nextTable;
                            continue outer;
                        } else
                            return e.find(h, k);
                    }
                    if ((e = e.next) == null)
                        return null;
                }
            }
        }
    }

    /**
     * A place-holder node used in computeIfAbsent and compute
     */
    static final class ReservationNode<K, V> extends Node<K, V> {
        ReservationNode() {
            super(RESERVED, null, null, null);
        }

        Node<K, V> find(int h, Object k) {
            return null;
        }
    }

    /* ---------------- Table Initialization and Resizing -------------- */

    /**
     * Returns the stamp bits for resizing a table of size n.
     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
     */
    static final int resizeStamp(int n) {
        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
    }

    /**
     * Initializes table, using the size recorded in sizeCtl.
     */
    private final Node<K, V>[] initTable() {
        Node<K, V>[] tab;
        int sc;
        while ((tab = table) == null || tab.length == 0) {
            if ((sc = sizeCtl) < 0)
                Thread.yield(); // lost initialization race; just spin
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        Node<K, V>[] nt = (Node<K, V>[]) new Node<?, ?>[n];
                        table = tab = nt;
                        sc = n - (n >>> 2);
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }

    /**
     * Adds to count, and if table is too small and not already
     * resizing, initiates transfer. If already resizing, helps
     * perform transfer if work is available.  Rechecks occupancy
     * after a transfer to see if another resize is already needed
     * because resizings are lagging additions.
     *
     * @param x     the count to add
     * @param check if <0, don't check resize, if <= 1 only check if uncontended
     */
    private final void addCount(long x, int check) {
        CounterCell[] as;
        long b, s;
        if ((as = counterCells) != null ||
                !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
            CounterCell a;
            long v;
            int m;
            boolean uncontended = true;
            if (as == null || (m = as.length - 1) < 0 ||
                    (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                    !(uncontended =
                            U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                fullAddCount(x, uncontended);
                return;
            }
            if (check <= 1)
                return;
            s = sumCount();
        }
        if (check >= 0) {
            Node<K, V>[] tab, nt;
            int n, sc;
            while (s >= (long) (sc = sizeCtl) && (tab = table) != null &&
                    (n = tab.length) < MAXIMUM_CAPACITY) {
                int rs = resizeStamp(n);
                if (sc < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                            sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                            transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                } else if (U.compareAndSwapInt(this, SIZECTL, sc,
                        (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);
                s = sumCount();
            }
        }
    }

    /**
     * Helps transfer if a resize is in progress.
     */
    final Node<K, V>[] helpTransfer(Node<K, V>[] tab, Node<K, V> f) {
        Node<K, V>[] nextTab;
        int sc;
        if (tab != null && (f instanceof ForwardingNode) &&
                (nextTab = ((ForwardingNode<K, V>) f).nextTable) != null) {
            int rs = resizeStamp(tab.length);
            while (nextTab == nextTable && table == tab &&
                    (sc = sizeCtl) < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || transferIndex <= 0)
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                    transfer(tab, nextTab);
                    break;
                }
            }
            return nextTab;
        }
        return table;
    }

    /**
     * Tries to presize table to accommodate the given number of elements.
     *
     * @param size number of elements (doesn't need to be perfectly accurate)
     */
    private final void tryPresize(int size) {
        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
                tableSizeFor(size + (size >>> 1) + 1);
        int sc;
        while ((sc = sizeCtl) >= 0) {
            Node<K, V>[] tab = table;
            int n;
            if (tab == null || (n = tab.length) == 0) {
                n = (sc > c) ? sc : c;
                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                    try {
                        if (table == tab) {
                            @SuppressWarnings("unchecked")
                            Node<K, V>[] nt = (Node<K, V>[]) new Node<?, ?>[n];
                            table = nt;
                            sc = n - (n >>> 2);
                        }
                    } finally {
                        sizeCtl = sc;
                    }
                }
            } else if (c <= sc || n >= MAXIMUM_CAPACITY)
                break;
            else if (tab == table) {
                int rs = resizeStamp(n);
                if (sc < 0) {
                    Node<K, V>[] nt;
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                            sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                            transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                } else if (U.compareAndSwapInt(this, SIZECTL, sc,
                        (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);
            }
        }
    }

    /**
     * Moves and/or copies the nodes in each bin to new table. See
     * above for explanation.
     */
    private final void transfer(Node<K, V>[] tab, Node<K, V>[] nextTab) {
        int n = tab.length, stride;
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node<K, V>[] nt = (Node<K, V>[]) new Node<?, ?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;
        }
        int nextn = nextTab.length;
        ForwardingNode<K, V> fwd = new ForwardingNode<K, V>(nextTab);
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0; ; ) {
            Node<K, V> f;
            int fh;
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                } else if (U.compareAndSwapInt
                        (this, TRANSFERINDEX, nextIndex,
                                nextBound = (nextIndex > stride ?
                                        nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            } else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node<K, V> ln, hn;
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K, V> lastRun = f;
                            for (Node<K, V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            } else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K, V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash;
                                K pk = p.key;
                                V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K, V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K, V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        } else if (f instanceof TreeBin) {
                            TreeBin<K, V> t = (TreeBin<K, V>) f;
                            TreeNode<K, V> lo = null, loTail = null;
                            TreeNode<K, V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K, V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K, V> p = new TreeNode<K, V>
                                        (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                } else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                    (hc != 0) ? new TreeBin<K, V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                    (lc != 0) ? new TreeBin<K, V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }

    /* ---------------- Counter support -------------- */

    /**
     * A padded cell for distributing counts.  Adapted from LongAdder
     * and Striped64.  See their internal docs for explanation.
     */
    @sun.misc.Contended
    static final class CounterCell {
        volatile long value;

        CounterCell(long x) {
            value = x;
        }
    }

    final long sumCount() {
        CounterCell[] as = counterCells;
        CounterCell a;
        long sum = baseCount;
        if (as != null) {
            for (int i = 0; i < as.length; ++i) {
                if ((a = as[i]) != null)
                    sum += a.value;
            }
        }
        return sum;
    }

    // See LongAdder version for explanation
    private final void fullAddCount(long x, boolean wasUncontended) {
        int h;
        if ((h = ThreadLocalRandom.getProbe()) == 0) {
            ThreadLocalRandom.localInit();      // force initialization
            h = ThreadLocalRandom.getProbe();
            wasUncontended = true;
        }
        boolean collide = false;                // True if last slot nonempty
        for (; ; ) {
            CounterCell[] as;
            CounterCell a;
            int n;
            long v;
            if ((as = counterCells) != null && (n = as.length) > 0) {
                if ((a = as[(n - 1) & h]) == null) {
                    if (cellsBusy == 0) {            // Try to attach new Cell
                        CounterCell r = new CounterCell(x); // Optimistic create
                        if (cellsBusy == 0 &&
                                U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                            boolean created = false;
                            try {               // Recheck under lock
                                CounterCell[] rs;
                                int m, j;
                                if ((rs = counterCells) != null &&
                                        (m = rs.length) > 0 &&
                                        rs[j = (m - 1) & h] == null) {
                                    rs[j] = r;
                                    created = true;
                                }
                            } finally {
                                cellsBusy = 0;
                            }
                            if (created)
                                break;
                            continue;           // Slot is now non-empty
                        }
                    }
                    collide = false;
                } else if (!wasUncontended)       // CAS already known to fail
                    wasUncontended = true;      // Continue after rehash
                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
                    break;
                else if (counterCells != as || n >= NCPU)
                    collide = false;            // At max size or stale
                else if (!collide)
                    collide = true;
                else if (cellsBusy == 0 &&
                        U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                    try {
                        if (counterCells == as) {// Expand table unless stale
                            CounterCell[] rs = new CounterCell[n << 1];
                            for (int i = 0; i < n; ++i)
                                rs[i] = as[i];
                            counterCells = rs;
                        }
                    } finally {
                        cellsBusy = 0;
                    }
                    collide = false;
                    continue;                   // Retry with expanded table
                }
                h = ThreadLocalRandom.advanceProbe(h);
            } else if (cellsBusy == 0 && counterCells == as &&
                    U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                boolean init = false;
                try {                           // Initialize table
                    if (counterCells == as) {
                        CounterCell[] rs = new CounterCell[2];
                        rs[h & 1] = new CounterCell(x);
                        counterCells = rs;
                        init = true;
                    }
                } finally {
                    cellsBusy = 0;
                }
                if (init)
                    break;
            } else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
                break;                          // Fall back on using base
        }
    }

    /* ---------------- Conversion from/to TreeBins -------------- */

    /**
     * Replaces all linked nodes in bin at given index unless table is
     * too small, in which case resizes instead.
     */
    private final void treeifyBin(Node<K, V>[] tab, int index) {
        Node<K, V> b;
        int n, sc;
        if (tab != null) {
            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
                tryPresize(n << 1);
            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
                synchronized (b) {
                    if (tabAt(tab, index) == b) {
                        TreeNode<K, V> hd = null, tl = null;
                        for (Node<K, V> e = b; e != null; e = e.next) {
                            TreeNode<K, V> p =
                                    new TreeNode<K, V>(e.hash, e.key, e.val,
                                            null, null);
                            if ((p.prev = tl) == null)
                                hd = p;
                            else
                                tl.next = p;
                            tl = p;
                        }
                        setTabAt(tab, index, new TreeBin<K, V>(hd));
                    }
                }
            }
        }
    }

    /**
     * Returns a list on non-TreeNodes replacing those in given list.
     */
    static <K, V> Node<K, V> untreeify(Node<K, V> b) {
        Node<K, V> hd = null, tl = null;
        for (Node<K, V> q = b; q != null; q = q.next) {
            Node<K, V> p = new Node<K, V>(q.hash, q.key, q.val, null);
            if (tl == null)
                hd = p;
            else
                tl.next = p;
            tl = p;
        }
        return hd;
    }

    /* ---------------- TreeNodes -------------- */

    /**
     * Nodes for use in TreeBins
     */
    static final class TreeNode<K, V> extends Node<K, V> {
        TreeNode<K, V> parent;  // red-black tree links
        TreeNode<K, V> left;
        TreeNode<K, V> right;
        TreeNode<K, V> prev;    // needed to unlink next upon deletion
        boolean red;

        TreeNode(int hash, K key, V val, Node<K, V> next,
                 TreeNode<K, V> parent) {
            super(hash, key, val, next);
            this.parent = parent;
        }

        Node<K, V> find(int h, Object k) {
            return findTreeNode(h, k, null);
        }

        /**
         * Returns the TreeNode (or null if not found) for the given key
         * starting at given root.
         */
        final TreeNode<K, V> findTreeNode(int h, Object k, Class<?> kc) {
            if (k != null) {
                TreeNode<K, V> p = this;
                do {
                    int ph, dir;
                    K pk;
                    TreeNode<K, V> q;
                    TreeNode<K, V> pl = p.left, pr = p.right;
                    if ((ph = p.hash) > h)
                        p = pl;
                    else if (ph < h)
                        p = pr;
                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                        return p;
                    else if (pl == null)
                        p = pr;
                    else if (pr == null)
                        p = pl;
                    else if ((kc != null ||
                            (kc = comparableClassFor(k)) != null) &&
                            (dir = compareComparables(kc, k, pk)) != 0)
                        p = (dir < 0) ? pl : pr;
                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
                        return q;
                    else
                        p = pl;
                } while (p != null);
            }
            return null;
        }
    }

    /* ---------------- TreeBins -------------- */

    /**
     * TreeNodes used at the heads of bins. TreeBins do not hold user
     * keys or values, but instead point to list of TreeNodes and
     * their root. They also maintain a parasitic read-write lock
     * forcing writers (who hold bin lock) to wait for readers (who do
     * not) to complete before tree restructuring operations.
     */
    static final class TreeBin<K, V> extends Node<K, V> {
        TreeNode<K, V> root;
        volatile TreeNode<K, V> first;
        volatile Thread waiter;
        volatile int lockState;
        // values for lockState
        static final int WRITER = 1; // set while holding write lock
        static final int WAITER = 2; // set when waiting for write lock
        static final int READER = 4; // increment value for setting read lock

        /**
         * Tie-breaking utility for ordering insertions when equal
         * hashCodes and non-comparable. We don't require a total
         * order, just a consistent insertion rule to maintain
         * equivalence across rebalancings. Tie-breaking further than
         * necessary simplifies testing a bit.
         */
        static int tieBreakOrder(Object a, Object b) {
            int d;
            if (a == null || b == null ||
                    (d = a.getClass().getName().
                            compareTo(b.getClass().getName())) == 0)
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                        -1 : 1);
            return d;
        }

        /**
         * Creates bin with initial set of nodes headed by b.
         */
        TreeBin(TreeNode<K, V> b) {
            super(TREEBIN, null, null, null);
            this.first = b;
            TreeNode<K, V> r = null;
            for (TreeNode<K, V> x = b, next; x != null; x = next) {
                next = (TreeNode<K, V>) x.next;
                x.left = x.right = null;
                if (r == null) {
                    x.parent = null;
                    x.red = false;
                    r = x;
                } else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K, V> p = r; ; ) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((kc == null &&
                                (kc = comparableClassFor(k)) == null) ||
                                (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);
                        TreeNode<K, V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            r = balanceInsertion(r, x);
                            break;
                        }
                    }
                }
            }
            this.root = r;
            assert checkInvariants(root);
        }

        /**
         * Acquires write lock for tree restructuring.
         */
        private final void lockRoot() {
            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
                contendedLock(); // offload to separate method
        }

        /**
         * Releases write lock for tree restructuring.
         */
        private final void unlockRoot() {
            lockState = 0;
        }

        /**
         * Possibly blocks awaiting root lock.
         */
        private final void contendedLock() {
            boolean waiting = false;
            for (int s; ; ) {
                if (((s = lockState) & ~WAITER) == 0) {
                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
                        if (waiting)
                            waiter = null;
                        return;
                    }
                } else if ((s & WAITER) == 0) {
                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
                        waiting = true;
                        waiter = Thread.currentThread();
                    }
                } else if (waiting)
                    LockSupport.park(this);
            }
        }

        /**
         * Returns matching node or null if none. Tries to search
         * using tree comparisons from root, but continues linear
         * search when lock not available.
         */
        final Node<K, V> find(int h, Object k) {
            if (k != null) {
                for (Node<K, V> e = first; e != null; ) {
                    int s;
                    K ek;
                    if (((s = lockState) & (WAITER | WRITER)) != 0) {
                        if (e.hash == h &&
                                ((ek = e.key) == k || (ek != null && k.equals(ek))))
                            return e;
                        e = e.next;
                    } else if (U.compareAndSwapInt(this, LOCKSTATE, s,
                            s + READER)) {
                        TreeNode<K, V> r, p;
                        try {
                            p = ((r = root) == null ? null :
                                    r.findTreeNode(h, k, null));
                        } finally {
                            Thread w;
                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
                                    (READER | WAITER) && (w = waiter) != null)
                                LockSupport.unpark(w);
                        }
                        return p;
                    }
                }
            }
            return null;
        }

        /**
         * Finds or adds a node.
         *
         * @return null if added
         */
        final TreeNode<K, V> putTreeVal(int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            for (TreeNode<K, V> p = root; ; ) {
                int dir, ph;
                K pk;
                if (p == null) {
                    first = root = new TreeNode<K, V>(h, k, v, null, null);
                    break;
                } else if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                        (kc = comparableClassFor(k)) == null) ||
                        (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode<K, V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                                (q = ch.findTreeNode(h, k, kc)) != null) ||
                                ((ch = p.right) != null &&
                                        (q = ch.findTreeNode(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K, V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    TreeNode<K, V> x, f = first;
                    first = x = new TreeNode<K, V>(h, k, v, f, xp);
                    if (f != null)
                        f.prev = x;
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    if (!xp.red)
                        x.red = true;
                    else {
                        lockRoot();
                        try {
                            root = balanceInsertion(root, x);
                        } finally {
                            unlockRoot();
                        }
                    }
                    break;
                }
            }
            assert checkInvariants(root);
            return null;
        }

        /**
         * Removes the given node, that must be present before this
         * call.  This is messier than typical red-black deletion code
         * because we cannot swap the contents of an interior node
         * with a leaf successor that is pinned by "next" pointers
         * that are accessible independently of lock. So instead we
         * swap the tree linkages.
         *
         * @return true if now too small, so should be untreeified
         */
        final boolean removeTreeNode(TreeNode<K, V> p) {
            TreeNode<K, V> next = (TreeNode<K, V>) p.next;
            TreeNode<K, V> pred = p.prev;  // unlink traversal pointers
            TreeNode<K, V> r, rl;
            if (pred == null)
                first = next;
            else
                pred.next = next;
            if (next != null)
                next.prev = pred;
            if (first == null) {
                root = null;
                return true;
            }
            if ((r = root) == null || r.right == null || // too small
                    (rl = r.left) == null || rl.left == null)
                return true;
            lockRoot();
            try {
                TreeNode<K, V> replacement;
                TreeNode<K, V> pl = p.left;
                TreeNode<K, V> pr = p.right;
                if (pl != null && pr != null) {
                    TreeNode<K, V> s = pr, sl;
                    while ((sl = s.left) != null) // find successor
                        s = sl;
                    boolean c = s.red;
                    s.red = p.red;
                    p.red = c; // swap colors
                    TreeNode<K, V> sr = s.right;
                    TreeNode<K, V> pp = p.parent;
                    if (s == pr) { // p was s's direct parent
                        p.parent = s;
                        s.right = p;
                    } else {
                        TreeNode<K, V> sp = s.parent;
                        if ((p.parent = sp) != null) {
                            if (s == sp.left)
                                sp.left = p;
                            else
                                sp.right = p;
                        }
                        if ((s.right = pr) != null)
                            pr.parent = s;
                    }
                    p.left = null;
                    if ((p.right = sr) != null)
                        sr.parent = p;
                    if ((s.left = pl) != null)
                        pl.parent = s;
                    if ((s.parent = pp) == null)
                        r = s;
                    else if (p == pp.left)
                        pp.left = s;
                    else
                        pp.right = s;
                    if (sr != null)
                        replacement = sr;
                    else
                        replacement = p;
                } else if (pl != null)
                    replacement = pl;
                else if (pr != null)
                    replacement = pr;
                else
                    replacement = p;
                if (replacement != p) {
                    TreeNode<K, V> pp = replacement.parent = p.parent;
                    if (pp == null)
                        r = replacement;
                    else if (p == pp.left)
                        pp.left = replacement;
                    else
                        pp.right = replacement;
                    p.left = p.right = p.parent = null;
                }

                root = (p.red) ? r : balanceDeletion(r, replacement);

                if (p == replacement) {  // detach pointers
                    TreeNode<K, V> pp;
                    if ((pp = p.parent) != null) {
                        if (p == pp.left)
                            pp.left = null;
                        else if (p == pp.right)
                            pp.right = null;
                        p.parent = null;
                    }
                }
            } finally {
                unlockRoot();
            }
            assert checkInvariants(root);
            return false;
        }

        /* ------------------------------------------------------------ */
        // Red-black tree methods, all adapted from CLR

        static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root,
                                                TreeNode<K, V> p) {
            TreeNode<K, V> r, pp, rl;
            if (p != null && (r = p.right) != null) {
                if ((rl = p.right = r.left) != null)
                    rl.parent = p;
                if ((pp = r.parent = p.parent) == null)
                    (root = r).red = false;
                else if (pp.left == p)
                    pp.left = r;
                else
                    pp.right = r;
                r.left = p;
                p.parent = r;
            }
            return root;
        }

        static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root,
                                                 TreeNode<K, V> p) {
            TreeNode<K, V> l, pp, lr;
            if (p != null && (l = p.left) != null) {
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;
                if ((pp = l.parent = p.parent) == null)
                    (root = l).red = false;
                else if (pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

        static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root,
                                                      TreeNode<K, V> x) {
            x.red = true;
            for (TreeNode<K, V> xp, xpp, xppl, xppr; ; ) {
                if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                } else if (!xp.red || (xpp = xp.parent) == null)
                    return root;
                if (xp == (xppl = xpp.left)) {
                    if ((xppr = xpp.right) != null && xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    } else {
                        if (x == xp.right) {
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                } else {
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    } else {
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

        static <K, V> TreeNode<K, V> balanceDeletion(TreeNode<K, V> root,
                                                     TreeNode<K, V> x) {
            for (TreeNode<K, V> xp, xpl, xpr; ; ) {
                if (x == null || x == root)
                    return root;
                else if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                } else if (x.red) {
                    x.red = false;
                    return root;
                } else if ((xpl = xp.left) == x) {
                    if ((xpr = xp.right) != null && xpr.red) {
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root, xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if (xpr == null)
                        x = xp;
                    else {
                        TreeNode<K, V> sl = xpr.left, sr = xpr.right;
                        if ((sr == null || !sr.red) &&
                                (sl == null || !sl.red)) {
                            xpr.red = true;
                            x = xp;
                        } else {
                            if (sr == null || !sr.red) {
                                if (sl != null)
                                    sl.red = false;
                                xpr.red = true;
                                root = rotateRight(root, xpr);
                                xpr = (xp = x.parent) == null ?
                                        null : xp.right;
                            }
                            if (xpr != null) {
                                xpr.red = (xp == null) ? false : xp.red;
                                if ((sr = xpr.right) != null)
                                    sr.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateLeft(root, xp);
                            }
                            x = root;
                        }
                    }
                } else { // symmetric
                    if (xpl != null && xpl.red) {
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root, xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }
                    if (xpl == null)
                        x = xp;
                    else {
                        TreeNode<K, V> sl = xpl.left, sr = xpl.right;
                        if ((sl == null || !sl.red) &&
                                (sr == null || !sr.red)) {
                            xpl.red = true;
                            x = xp;
                        } else {
                            if (sl == null || !sl.red) {
                                if (sr != null)
                                    sr.red = false;
                                xpl.red = true;
                                root = rotateLeft(root, xpl);
                                xpl = (xp = x.parent) == null ?
                                        null : xp.left;
                            }
                            if (xpl != null) {
                                xpl.red = (xp == null) ? false : xp.red;
                                if ((sl = xpl.left) != null)
                                    sl.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateRight(root, xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }

        /**
         * Recursive invariant check
         */
        static <K, V> boolean checkInvariants(TreeNode<K, V> t) {
            TreeNode<K, V> tp = t.parent, tl = t.left, tr = t.right,
                    tb = t.prev, tn = (TreeNode<K, V>) t.next;
            if (tb != null && tb.next != t)
                return false;
            if (tn != null && tn.prev != t)
                return false;
            if (tp != null && t != tp.left && t != tp.right)
                return false;
            if (tl != null && (tl.parent != t || tl.hash > t.hash))
                return false;
            if (tr != null && (tr.parent != t || tr.hash < t.hash))
                return false;
            if (t.red && tl != null && tl.red && tr != null && tr.red)
                return false;
            if (tl != null && !checkInvariants(tl))
                return false;
            if (tr != null && !checkInvariants(tr))
                return false;
            return true;
        }

        private static final sun.misc.Unsafe U;
        private static final long LOCKSTATE;

        static {
            try {
                U = sun.misc.Unsafe.getUnsafe();
                Class<?> k = TreeBin.class;
                LOCKSTATE = U.objectFieldOffset
                        (k.getDeclaredField("lockState"));
            } catch (Exception e) {
                throw new Error(e);
            }
        }
    }

    /* ----------------Table Traversal -------------- */

    /**
     * Records the table, its length, and current traversal index for a
     * traverser that must process a region of a forwarded table before
     * proceeding with current table.
     */
    static final class TableStack<K, V> {
        int length;
        int index;
        Node<K, V>[] tab;
        TableStack<K, V> next;
    }

    /**
     * Encapsulates traversal for methods such as containsValue; also
     * serves as a base class for other iterators and spliterators.
     * <p>
     * Method advance visits once each still-valid node that was
     * reachable upon iterator construction. It might miss some that
     * were added to a bin after the bin was visited, which is OK wrt
     * consistency guarantees. Maintaining this property in the face
     * of possible ongoing resizes requires a fair amount of
     * bookkeeping state that is difficult to optimize away amidst
     * volatile accesses.  Even so, traversal maintains reasonable
     * throughput.
     * <p>
     * Normally, iteration proceeds bin-by-bin traversing lists.
     * However, if the table has been resized, then all future steps
     * must traverse both the bin at the current index as well as at
     * (index + baseSize); and so on for further resizings. To
     * paranoically cope with potential sharing by users of iterators
     * across threads, iteration terminates if a bounds checks fails
     * for a table read.
     */
    static class Traverser<K, V> {
        Node<K, V>[] tab;        // current table; updated if resized
        Node<K, V> next;         // the next entry to use
        TableStack<K, V> stack, spare; // to save/restore on ForwardingNodes
        int index;              // index of bin to use next
        int baseIndex;          // current index of initial table
        int baseLimit;          // index bound for initial table
        final int baseSize;     // initial table size

        Traverser(Node<K, V>[] tab, int size, int index, int limit) {
            this.tab = tab;
            this.baseSize = size;
            this.baseIndex = this.index = index;
            this.baseLimit = limit;
            this.next = null;
        }

        /**
         * Advances if possible, returning next valid node, or null if none.
         */
        final Node<K, V> advance() {
            Node<K, V> e;
            if ((e = next) != null)
                e = e.next;
            for (; ; ) {
                Node<K, V>[] t;
                int i, n;  // must use locals in checks
                if (e != null)
                    return next = e;
                if (baseIndex >= baseLimit || (t = tab) == null ||
                        (n = t.length) <= (i = index) || i < 0)
                    return next = null;
                if ((e = tabAt(t, i)) != null && e.hash < 0) {
                    if (e instanceof ForwardingNode) {
                        tab = ((ForwardingNode<K, V>) e).nextTable;
                        e = null;
                        pushState(t, i, n);
                        continue;
                    } else if (e instanceof TreeBin)
                        e = ((TreeBin<K, V>) e).first;
                    else
                        e = null;
                }
                if (stack != null)
                    recoverState(n);
                else if ((index = i + baseSize) >= n)
                    index = ++baseIndex; // visit upper slots if present
            }
        }

        /**
         * Saves traversal state upon encountering a forwarding node.
         */
        private void pushState(Node<K, V>[] t, int i, int n) {
            TableStack<K, V> s = spare;  // reuse if possible
            if (s != null)
                spare = s.next;
            else
                s = new TableStack<K, V>();
            s.tab = t;
            s.length = n;
            s.index = i;
            s.next = stack;
            stack = s;
        }

        /**
         * Possibly pops traversal state.
         *
         * @param n length of current table
         */
        private void recoverState(int n) {
            TableStack<K, V> s;
            int len;
            while ((s = stack) != null && (index += (len = s.length)) >= n) {
                n = len;
                index = s.index;
                tab = s.tab;
                s.tab = null;
                TableStack<K, V> next = s.next;
                s.next = spare; // save for reuse
                stack = next;
                spare = s;
            }
            if (s == null && (index += baseSize) >= n)
                index = ++baseIndex;
        }
    }

    /**
     * Base of key, value, and entry Iterators. Adds fields to
     * Traverser to support iterator.remove.
     */
    static class BaseIterator<K, V> extends Traverser<K, V> {
        final ConcurrentHashMap<K, V> map;
        Node<K, V> lastReturned;

        BaseIterator(Node<K, V>[] tab, int size, int index, int limit,
                     ConcurrentHashMap<K, V> map) {
            super(tab, size, index, limit);
            this.map = map;
            advance();
        }

        public final boolean hasNext() {
            return next != null;
        }

        public final boolean hasMoreElements() {
            return next != null;
        }

        public final void remove() {
            Node<K, V> p;
            if ((p = lastReturned) == null)
                throw new IllegalStateException();
            lastReturned = null;
            map.replaceNode(p.key, null, null);
        }
    }

    static final class KeyIterator<K, V> extends BaseIterator<K, V>
            implements Iterator<K>, Enumeration<K> {
        KeyIterator(Node<K, V>[] tab, int index, int size, int limit,
                    ConcurrentHashMap<K, V> map) {
            super(tab, index, size, limit, map);
        }

        public final K next() {
            Node<K, V> p;
            if ((p = next) == null)
                throw new NoSuchElementException();
            K k = p.key;
            lastReturned = p;
            advance();
            return k;
        }

        public final K nextElement() {
            return next();
        }
    }

    static final class ValueIterator<K, V> extends BaseIterator<K, V>
            implements Iterator<V>, Enumeration<V> {
        ValueIterator(Node<K, V>[] tab, int index, int size, int limit,
                      ConcurrentHashMap<K, V> map) {
            super(tab, index, size, limit, map);
        }

        public final V next() {
            Node<K, V> p;
            if ((p = next) == null)
                throw new NoSuchElementException();
            V v = p.val;
            lastReturned = p;
            advance();
            return v;
        }

        public final V nextElement() {
            return next();
        }
    }

    static final class EntryIterator<K, V> extends BaseIterator<K, V>
            implements Iterator<Map.Entry<K, V>> {
        EntryIterator(Node<K, V>[] tab, int index, int size, int limit,
                      ConcurrentHashMap<K, V> map) {
            super(tab, index, size, limit, map);
        }

        public final Map.Entry<K, V> next() {
            Node<K, V> p;
            if ((p = next) == null)
                throw new NoSuchElementException();
            K k = p.key;
            V v = p.val;
            lastReturned = p;
            advance();
            return new MapEntry<K, V>(k, v, map);
        }
    }

    /**
     * Exported Entry for EntryIterator
     */
    static final class MapEntry<K, V> implements Map.Entry<K, V> {
        final K key; // non-null
        V val;       // non-null
        final ConcurrentHashMap<K, V> map;

        MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
            this.key = key;
            this.val = val;
            this.map = map;
        }

        public K getKey() {
            return key;
        }

        public V getValue() {
            return val;
        }

        public int hashCode() {
            return key.hashCode() ^ val.hashCode();
        }

        public String toString() {
            return key + "=" + val;
        }

        public boolean equals(Object o) {
            Object k, v;
            Map.Entry<?, ?> e;
            return ((o instanceof Map.Entry) &&
                    (k = (e = (Map.Entry<?, ?>) o).getKey()) != null &&
                    (v = e.getValue()) != null &&
                    (k == key || k.equals(key)) &&
                    (v == val || v.equals(val)));
        }

        /**
         * Sets our entry's value and writes through to the map. The
         * value to return is somewhat arbitrary here. Since we do not
         * necessarily track asynchronous changes, the most recent
         * "previous" value could be different from what we return (or
         * could even have been removed, in which case the put will
         * re-establish). We do not and cannot guarantee more.
         */
        public V setValue(V value) {
            if (value == null) throw new NullPointerException();
            V v = val;
            val = value;
            map.put(key, value);
            return v;
        }
    }

    static final class KeySpliterator<K, V> extends Traverser<K, V>
            implements Spliterator<K> {
        long est;               // size estimate

        KeySpliterator(Node<K, V>[] tab, int size, int index, int limit,
                       long est) {
            super(tab, size, index, limit);
            this.est = est;
        }

        public Spliterator<K> trySplit() {
            int i, f, h;
            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
                    new KeySpliterator<K, V>(tab, baseSize, baseLimit = h,
                            f, est >>>= 1);
        }

        public void forEachRemaining(Consumer<? super K> action) {
            if (action == null) throw new NullPointerException();
            for (Node<K, V> p; (p = advance()) != null; )
                action.accept(p.key);
        }

        public boolean tryAdvance(Consumer<? super K> action) {
            if (action == null) throw new NullPointerException();
            Node<K, V> p;
            if ((p = advance()) == null)
                return false;
            action.accept(p.key);
            return true;
        }

        public long estimateSize() {
            return est;
        }

        public int characteristics() {
            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
                    Spliterator.NONNULL;
        }
    }

    static final class ValueSpliterator<K, V> extends Traverser<K, V>
            implements Spliterator<V> {
        long est;               // size estimate

        ValueSpliterator(Node<K, V>[] tab, int size, int index, int limit,
                         long est) {
            super(tab, size, index, limit);
            this.est = est;
        }

        public Spliterator<V> trySplit() {
            int i, f, h;
            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
                    new ValueSpliterator<K, V>(tab, baseSize, baseLimit = h,
                            f, est >>>= 1);
        }

        public void forEachRemaining(Consumer<? super V> action) {
            if (action == null) throw new NullPointerException();
            for (Node<K, V> p; (p = advance()) != null; )
                action.accept(p.val);
        }

        public boolean tryAdvance(Consumer<? super V> action) {
            if (action == null) throw new NullPointerException();
            Node<K, V> p;
            if ((p = advance()) == null)
                return false;
            action.accept(p.val);
            return true;
        }

        public long estimateSize() {
            return est;
        }

        public int characteristics() {
            return Spliterator.CONCURRENT | Spliterator.NONNULL;
        }
    }

    static final class EntrySpliterator<K, V> extends Traverser<K, V>
            implements Spliterator<Map.Entry<K, V>> {
        final ConcurrentHashMap<K, V> map; // To export MapEntry
        long est;               // size estimate

        EntrySpliterator(Node<K, V>[] tab, int size, int index, int limit,
                         long est, ConcurrentHashMap<K, V> map) {
            super(tab, size, index, limit);
            this.map = map;
            this.est = est;
        }

        public Spliterator<Map.Entry<K, V>> trySplit() {
            int i, f, h;
            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
                    new EntrySpliterator<K, V>(tab, baseSize, baseLimit = h,
                            f, est >>>= 1, map);
        }

        public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
            if (action == null) throw new NullPointerException();
            for (Node<K, V> p; (p = advance()) != null; )
                action.accept(new MapEntry<K, V>(p.key, p.val, map));
        }

        public boolean tryAdvance(Consumer<? super Map.Entry<K, V>> action) {
            if (action == null) throw new NullPointerException();
            Node<K, V> p;
            if ((p = advance()) == null)
                return false;
            action.accept(new MapEntry<K, V>(p.key, p.val, map));
            return true;
        }

        public long estimateSize() {
            return est;
        }

        public int characteristics() {
            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
                    Spliterator.NONNULL;
        }
    }

    // Parallel bulk operations

    /**
     * Computes initial batch value for bulk tasks. The returned value
     * is approximately exp2 of the number of times (minus one) to
     * split task by two before executing leaf action. This value is
     * faster to compute and more convenient to use as a guide to
     * splitting than is the depth, since it is used while dividing by
     * two anyway.
     */
    final int batchFor(long b) {
        long n;
        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
            return 0;
        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
        return (b <= 0L || (n /= b) >= sp) ? sp : (int) n;
    }

    /**
     * Performs the given action for each (key, value).
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param action               the action
     * @since 1.8
     */
    public void forEach(long parallelismThreshold,
                        BiConsumer<? super K, ? super V> action) {
        if (action == null) throw new NullPointerException();
        new ForEachMappingTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        action).invoke();
    }

    /**
     * Performs the given action for each non-null transformation
     * of each (key, value).
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element, or null if there is no transformation (in
     *                             which case the action is not applied)
     * @param action               the action
     * @param <U>                  the return type of the transformer
     * @since 1.8
     */
    public <U> void forEach(long parallelismThreshold,
                            BiFunction<? super K, ? super V, ? extends U> transformer,
                            Consumer<? super U> action) {
        if (transformer == null || action == null)
            throw new NullPointerException();
        new ForEachTransformedMappingTask<K, V, U>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        transformer, action).invoke();
    }

    /**
     * Returns a non-null result from applying the given search
     * function on each (key, value), or null if none.  Upon
     * success, further element processing is suppressed and the
     * results of any other parallel invocations of the search
     * function are ignored.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param searchFunction       a function returning a non-null
     *                             result on success, else null
     * @param <U>                  the return type of the search function
     * @return a non-null result from applying the given search
     * function on each (key, value), or null if none
     * @since 1.8
     */
    public <U> U search(long parallelismThreshold,
                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
        if (searchFunction == null) throw new NullPointerException();
        return new SearchMappingsTask<K, V, U>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        searchFunction, new AtomicReference<U>()).invoke();
    }

    /**
     * Returns the result of accumulating the given transformation
     * of all (key, value) pairs using the given reducer to
     * combine values, or null if none.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element, or null if there is no transformation (in
     *                             which case it is not combined)
     * @param reducer              a commutative associative combining function
     * @param <U>                  the return type of the transformer
     * @return the result of accumulating the given transformation
     * of all (key, value) pairs
     * @since 1.8
     */
    public <U> U reduce(long parallelismThreshold,
                        BiFunction<? super K, ? super V, ? extends U> transformer,
                        BiFunction<? super U, ? super U, ? extends U> reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceMappingsTask<K, V, U>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, transformer, reducer).invoke();
    }

    /**
     * Returns the result of accumulating the given transformation
     * of all (key, value) pairs using the given reducer to
     * combine values, and the given basis as an identity value.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element
     * @param basis                the identity (initial default value) for the reduction
     * @param reducer              a commutative associative combining function
     * @return the result of accumulating the given transformation
     * of all (key, value) pairs
     * @since 1.8
     */
    public double reduceToDouble(long parallelismThreshold,
                                 ToDoubleBiFunction<? super K, ? super V> transformer,
                                 double basis,
                                 DoubleBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceMappingsToDoubleTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, transformer, basis, reducer).invoke();
    }

    /**
     * Returns the result of accumulating the given transformation
     * of all (key, value) pairs using the given reducer to
     * combine values, and the given basis as an identity value.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element
     * @param basis                the identity (initial default value) for the reduction
     * @param reducer              a commutative associative combining function
     * @return the result of accumulating the given transformation
     * of all (key, value) pairs
     * @since 1.8
     */
    public long reduceToLong(long parallelismThreshold,
                             ToLongBiFunction<? super K, ? super V> transformer,
                             long basis,
                             LongBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceMappingsToLongTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, transformer, basis, reducer).invoke();
    }

    /**
     * Returns the result of accumulating the given transformation
     * of all (key, value) pairs using the given reducer to
     * combine values, and the given basis as an identity value.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element
     * @param basis                the identity (initial default value) for the reduction
     * @param reducer              a commutative associative combining function
     * @return the result of accumulating the given transformation
     * of all (key, value) pairs
     * @since 1.8
     */
    public int reduceToInt(long parallelismThreshold,
                           ToIntBiFunction<? super K, ? super V> transformer,
                           int basis,
                           IntBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceMappingsToIntTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, transformer, basis, reducer).invoke();
    }

    /**
     * Performs the given action for each key.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param action               the action
     * @since 1.8
     */
    public void forEachKey(long parallelismThreshold,
                           Consumer<? super K> action) {
        if (action == null) throw new NullPointerException();
        new ForEachKeyTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        action).invoke();
    }

    /**
     * Performs the given action for each non-null transformation
     * of each key.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element, or null if there is no transformation (in
     *                             which case the action is not applied)
     * @param action               the action
     * @param <U>                  the return type of the transformer
     * @since 1.8
     */
    public <U> void forEachKey(long parallelismThreshold,
                               Function<? super K, ? extends U> transformer,
                               Consumer<? super U> action) {
        if (transformer == null || action == null)
            throw new NullPointerException();
        new ForEachTransformedKeyTask<K, V, U>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        transformer, action).invoke();
    }

    /**
     * Returns a non-null result from applying the given search
     * function on each key, or null if none. Upon success,
     * further element processing is suppressed and the results of
     * any other parallel invocations of the search function are
     * ignored.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param searchFunction       a function returning a non-null
     *                             result on success, else null
     * @param <U>                  the return type of the search function
     * @return a non-null result from applying the given search
     * function on each key, or null if none
     * @since 1.8
     */
    public <U> U searchKeys(long parallelismThreshold,
                            Function<? super K, ? extends U> searchFunction) {
        if (searchFunction == null) throw new NullPointerException();
        return new SearchKeysTask<K, V, U>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        searchFunction, new AtomicReference<U>()).invoke();
    }

    /**
     * Returns the result of accumulating all keys using the given
     * reducer to combine values, or null if none.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param reducer              a commutative associative combining function
     * @return the result of accumulating all keys using the given
     * reducer to combine values, or null if none
     * @since 1.8
     */
    public K reduceKeys(long parallelismThreshold,
                        BiFunction<? super K, ? super K, ? extends K> reducer) {
        if (reducer == null) throw new NullPointerException();
        return new ReduceKeysTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, reducer).invoke();
    }

    /**
     * Returns the result of accumulating the given transformation
     * of all keys using the given reducer to combine values, or
     * null if none.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element, or null if there is no transformation (in
     *                             which case it is not combined)
     * @param reducer              a commutative associative combining function
     * @param <U>                  the return type of the transformer
     * @return the result of accumulating the given transformation
     * of all keys
     * @since 1.8
     */
    public <U> U reduceKeys(long parallelismThreshold,
                            Function<? super K, ? extends U> transformer,
                            BiFunction<? super U, ? super U, ? extends U> reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceKeysTask<K, V, U>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, transformer, reducer).invoke();
    }

    /**
     * Returns the result of accumulating the given transformation
     * of all keys using the given reducer to combine values, and
     * the given basis as an identity value.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element
     * @param basis                the identity (initial default value) for the reduction
     * @param reducer              a commutative associative combining function
     * @return the result of accumulating the given transformation
     * of all keys
     * @since 1.8
     */
    public double reduceKeysToDouble(long parallelismThreshold,
                                     ToDoubleFunction<? super K> transformer,
                                     double basis,
                                     DoubleBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceKeysToDoubleTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, transformer, basis, reducer).invoke();
    }

    /**
     * Returns the result of accumulating the given transformation
     * of all keys using the given reducer to combine values, and
     * the given basis as an identity value.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element
     * @param basis                the identity (initial default value) for the reduction
     * @param reducer              a commutative associative combining function
     * @return the result of accumulating the given transformation
     * of all keys
     * @since 1.8
     */
    public long reduceKeysToLong(long parallelismThreshold,
                                 ToLongFunction<? super K> transformer,
                                 long basis,
                                 LongBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceKeysToLongTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, transformer, basis, reducer).invoke();
    }

    /**
     * Returns the result of accumulating the given transformation
     * of all keys using the given reducer to combine values, and
     * the given basis as an identity value.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element
     * @param basis                the identity (initial default value) for the reduction
     * @param reducer              a commutative associative combining function
     * @return the result of accumulating the given transformation
     * of all keys
     * @since 1.8
     */
    public int reduceKeysToInt(long parallelismThreshold,
                               ToIntFunction<? super K> transformer,
                               int basis,
                               IntBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceKeysToIntTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, transformer, basis, reducer).invoke();
    }

    /**
     * Performs the given action for each value.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param action               the action
     * @since 1.8
     */
    public void forEachValue(long parallelismThreshold,
                             Consumer<? super V> action) {
        if (action == null)
            throw new NullPointerException();
        new ForEachValueTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        action).invoke();
    }

    /**
     * Performs the given action for each non-null transformation
     * of each value.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element, or null if there is no transformation (in
     *                             which case the action is not applied)
     * @param action               the action
     * @param <U>                  the return type of the transformer
     * @since 1.8
     */
    public <U> void forEachValue(long parallelismThreshold,
                                 Function<? super V, ? extends U> transformer,
                                 Consumer<? super U> action) {
        if (transformer == null || action == null)
            throw new NullPointerException();
        new ForEachTransformedValueTask<K, V, U>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        transformer, action).invoke();
    }

    /**
     * Returns a non-null result from applying the given search
     * function on each value, or null if none.  Upon success,
     * further element processing is suppressed and the results of
     * any other parallel invocations of the search function are
     * ignored.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param searchFunction       a function returning a non-null
     *                             result on success, else null
     * @param <U>                  the return type of the search function
     * @return a non-null result from applying the given search
     * function on each value, or null if none
     * @since 1.8
     */
    public <U> U searchValues(long parallelismThreshold,
                              Function<? super V, ? extends U> searchFunction) {
        if (searchFunction == null) throw new NullPointerException();
        return new SearchValuesTask<K, V, U>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        searchFunction, new AtomicReference<U>()).invoke();
    }

    /**
     * Returns the result of accumulating all values using the
     * given reducer to combine values, or null if none.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param reducer              a commutative associative combining function
     * @return the result of accumulating all values
     * @since 1.8
     */
    public V reduceValues(long parallelismThreshold,
                          BiFunction<? super V, ? super V, ? extends V> reducer) {
        if (reducer == null) throw new NullPointerException();
        return new ReduceValuesTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, reducer).invoke();
    }

    /**
     * Returns the result of accumulating the given transformation
     * of all values using the given reducer to combine values, or
     * null if none.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element, or null if there is no transformation (in
     *                             which case it is not combined)
     * @param reducer              a commutative associative combining function
     * @param <U>                  the return type of the transformer
     * @return the result of accumulating the given transformation
     * of all values
     * @since 1.8
     */
    public <U> U reduceValues(long parallelismThreshold,
                              Function<? super V, ? extends U> transformer,
                              BiFunction<? super U, ? super U, ? extends U> reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceValuesTask<K, V, U>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, transformer, reducer).invoke();
    }

    /**
     * Returns the result of accumulating the given transformation
     * of all values using the given reducer to combine values,
     * and the given basis as an identity value.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element
     * @param basis                the identity (initial default value) for the reduction
     * @param reducer              a commutative associative combining function
     * @return the result of accumulating the given transformation
     * of all values
     * @since 1.8
     */
    public double reduceValuesToDouble(long parallelismThreshold,
                                       ToDoubleFunction<? super V> transformer,
                                       double basis,
                                       DoubleBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceValuesToDoubleTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, transformer, basis, reducer).invoke();
    }

    /**
     * Returns the result of accumulating the given transformation
     * of all values using the given reducer to combine values,
     * and the given basis as an identity value.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element
     * @param basis                the identity (initial default value) for the reduction
     * @param reducer              a commutative associative combining function
     * @return the result of accumulating the given transformation
     * of all values
     * @since 1.8
     */
    public long reduceValuesToLong(long parallelismThreshold,
                                   ToLongFunction<? super V> transformer,
                                   long basis,
                                   LongBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceValuesToLongTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, transformer, basis, reducer).invoke();
    }

    /**
     * Returns the result of accumulating the given transformation
     * of all values using the given reducer to combine values,
     * and the given basis as an identity value.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element
     * @param basis                the identity (initial default value) for the reduction
     * @param reducer              a commutative associative combining function
     * @return the result of accumulating the given transformation
     * of all values
     * @since 1.8
     */
    public int reduceValuesToInt(long parallelismThreshold,
                                 ToIntFunction<? super V> transformer,
                                 int basis,
                                 IntBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceValuesToIntTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, transformer, basis, reducer).invoke();
    }

    /**
     * Performs the given action for each entry.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param action               the action
     * @since 1.8
     */
    public void forEachEntry(long parallelismThreshold,
                             Consumer<? super Map.Entry<K, V>> action) {
        if (action == null) throw new NullPointerException();
        new ForEachEntryTask<K, V>(null, batchFor(parallelismThreshold), 0, 0, table,
                action).invoke();
    }

    /**
     * Performs the given action for each non-null transformation
     * of each entry.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element, or null if there is no transformation (in
     *                             which case the action is not applied)
     * @param action               the action
     * @param <U>                  the return type of the transformer
     * @since 1.8
     */
    public <U> void forEachEntry(long parallelismThreshold,
                                 Function<Map.Entry<K, V>, ? extends U> transformer,
                                 Consumer<? super U> action) {
        if (transformer == null || action == null)
            throw new NullPointerException();
        new ForEachTransformedEntryTask<K, V, U>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        transformer, action).invoke();
    }

    /**
     * Returns a non-null result from applying the given search
     * function on each entry, or null if none.  Upon success,
     * further element processing is suppressed and the results of
     * any other parallel invocations of the search function are
     * ignored.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param searchFunction       a function returning a non-null
     *                             result on success, else null
     * @param <U>                  the return type of the search function
     * @return a non-null result from applying the given search
     * function on each entry, or null if none
     * @since 1.8
     */
    public <U> U searchEntries(long parallelismThreshold,
                               Function<Map.Entry<K, V>, ? extends U> searchFunction) {
        if (searchFunction == null) throw new NullPointerException();
        return new SearchEntriesTask<K, V, U>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        searchFunction, new AtomicReference<U>()).invoke();
    }

    /**
     * Returns the result of accumulating all entries using the
     * given reducer to combine values, or null if none.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param reducer              a commutative associative combining function
     * @return the result of accumulating all entries
     * @since 1.8
     */
    public Map.Entry<K, V> reduceEntries(long parallelismThreshold,
                                         BiFunction<Map.Entry<K, V>, Map.Entry<K, V>, ? extends Map.Entry<K, V>> reducer) {
        if (reducer == null) throw new NullPointerException();
        return new ReduceEntriesTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, reducer).invoke();
    }

    /**
     * Returns the result of accumulating the given transformation
     * of all entries using the given reducer to combine values,
     * or null if none.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element, or null if there is no transformation (in
     *                             which case it is not combined)
     * @param reducer              a commutative associative combining function
     * @param <U>                  the return type of the transformer
     * @return the result of accumulating the given transformation
     * of all entries
     * @since 1.8
     */
    public <U> U reduceEntries(long parallelismThreshold,
                               Function<Map.Entry<K, V>, ? extends U> transformer,
                               BiFunction<? super U, ? super U, ? extends U> reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceEntriesTask<K, V, U>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, transformer, reducer).invoke();
    }

    /**
     * Returns the result of accumulating the given transformation
     * of all entries using the given reducer to combine values,
     * and the given basis as an identity value.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element
     * @param basis                the identity (initial default value) for the reduction
     * @param reducer              a commutative associative combining function
     * @return the result of accumulating the given transformation
     * of all entries
     * @since 1.8
     */
    public double reduceEntriesToDouble(long parallelismThreshold,
                                        ToDoubleFunction<Map.Entry<K, V>> transformer,
                                        double basis,
                                        DoubleBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceEntriesToDoubleTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, transformer, basis, reducer).invoke();
    }

    /**
     * Returns the result of accumulating the given transformation
     * of all entries using the given reducer to combine values,
     * and the given basis as an identity value.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element
     * @param basis                the identity (initial default value) for the reduction
     * @param reducer              a commutative associative combining function
     * @return the result of accumulating the given transformation
     * of all entries
     * @since 1.8
     */
    public long reduceEntriesToLong(long parallelismThreshold,
                                    ToLongFunction<Map.Entry<K, V>> transformer,
                                    long basis,
                                    LongBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceEntriesToLongTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, transformer, basis, reducer).invoke();
    }

    /**
     * Returns the result of accumulating the given transformation
     * of all entries using the given reducer to combine values,
     * and the given basis as an identity value.
     *
     * @param parallelismThreshold the (estimated) number of elements
     *                             needed for this operation to be executed in parallel
     * @param transformer          a function returning the transformation
     *                             for an element
     * @param basis                the identity (initial default value) for the reduction
     * @param reducer              a commutative associative combining function
     * @return the result of accumulating the given transformation
     * of all entries
     * @since 1.8
     */
    public int reduceEntriesToInt(long parallelismThreshold,
                                  ToIntFunction<Map.Entry<K, V>> transformer,
                                  int basis,
                                  IntBinaryOperator reducer) {
        if (transformer == null || reducer == null)
            throw new NullPointerException();
        return new MapReduceEntriesToIntTask<K, V>
                (null, batchFor(parallelismThreshold), 0, 0, table,
                        null, transformer, basis, reducer).invoke();
    }


    /* ----------------Views -------------- */

    /**
     * Base class for views.
     */
    abstract static class CollectionView<K, V, E>
            implements Collection<E>, java.io.Serializable {
        private static final long serialVersionUID = 7249069246763182397L;
        final ConcurrentHashMap<K, V> map;

        CollectionView(ConcurrentHashMap<K, V> map) {
            this.map = map;
        }

        /**
         * Returns the map backing this view.
         *
         * @return the map backing this view
         */
        public ConcurrentHashMap<K, V> getMap() {
            return map;
        }

        /**
         * Removes all of the elements from this view, by removing all
         * the mappings from the map backing this view.
         */
        public final void clear() {
            map.clear();
        }

        public final int size() {
            return map.size();
        }

        public final boolean isEmpty() {
            return map.isEmpty();
        }

        // implementations below rely on concrete classes supplying these
        // abstract methods

        /**
         * Returns an iterator over the elements in this collection.
         * <p>
         * <p>The returned iterator is
         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
         *
         * @return an iterator over the elements in this collection
         */
        public abstract Iterator<E> iterator();

        public abstract boolean contains(Object o);

        public abstract boolean remove(Object o);

        private static final String oomeMsg = "Required array size too large";

        public final Object[] toArray() {
            long sz = map.mappingCount();
            if (sz > MAX_ARRAY_SIZE)
                throw new OutOfMemoryError(oomeMsg);
            int n = (int) sz;
            Object[] r = new Object[n];
            int i = 0;
            for (E e : this) {
                if (i == n) {
                    if (n >= MAX_ARRAY_SIZE)
                        throw new OutOfMemoryError(oomeMsg);
                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
                        n = MAX_ARRAY_SIZE;
                    else
                        n += (n >>> 1) + 1;
                    r = Arrays.copyOf(r, n);
                }
                r[i++] = e;
            }
            return (i == n) ? r : Arrays.copyOf(r, i);
        }

        @SuppressWarnings("unchecked")
        public final <T> T[] toArray(T[] a) {
            long sz = map.mappingCount();
            if (sz > MAX_ARRAY_SIZE)
                throw new OutOfMemoryError(oomeMsg);
            int m = (int) sz;
            T[] r = (a.length >= m) ? a :
                    (T[]) java.lang.reflect.Array
                            .newInstance(a.getClass().getComponentType(), m);
            int n = r.length;
            int i = 0;
            for (E e : this) {
                if (i == n) {
                    if (n >= MAX_ARRAY_SIZE)
                        throw new OutOfMemoryError(oomeMsg);
                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
                        n = MAX_ARRAY_SIZE;
                    else
                        n += (n >>> 1) + 1;
                    r = Arrays.copyOf(r, n);
                }
                r[i++] = (T) e;
            }
            if (a == r && i < n) {
                r[i] = null; // null-terminate
                return r;
            }
            return (i == n) ? r : Arrays.copyOf(r, i);
        }

        /**
         * Returns a string representation of this collection.
         * The string representation consists of the string representations
         * of the collection's elements in the order they are returned by
         * its iterator, enclosed in square brackets ({@code "[]"}).
         * Adjacent elements are separated by the characters {@code ", "}
         * (comma and space).  Elements are converted to strings as by
         * {@link String#valueOf(Object)}.
         *
         * @return a string representation of this collection
         */
        public final String toString() {
            StringBuilder sb = new StringBuilder();
            sb.append('[');
            Iterator<E> it = iterator();
            if (it.hasNext()) {
                for (; ; ) {
                    Object e = it.next();
                    sb.append(e == this ? "(this Collection)" : e);
                    if (!it.hasNext())
                        break;
                    sb.append(',').append(' ');
                }
            }
            return sb.append(']').toString();
        }

        public final boolean containsAll(Collection<?> c) {
            if (c != this) {
                for (Object e : c) {
                    if (e == null || !contains(e))
                        return false;
                }
            }
            return true;
        }

        public final boolean removeAll(Collection<?> c) {
            if (c == null) throw new NullPointerException();
            boolean modified = false;
            for (Iterator<E> it = iterator(); it.hasNext(); ) {
                if (c.contains(it.next())) {
                    it.remove();
                    modified = true;
                }
            }
            return modified;
        }

        public final boolean retainAll(Collection<?> c) {
            if (c == null) throw new NullPointerException();
            boolean modified = false;
            for (Iterator<E> it = iterator(); it.hasNext(); ) {
                if (!c.contains(it.next())) {
                    it.remove();
                    modified = true;
                }
            }
            return modified;
        }

    }

    /**
     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
     * which additions may optionally be enabled by mapping to a
     * common value.  This class cannot be directly instantiated.
     * See {@link #keySet() keySet()},
     * {@link #keySet(Object) keySet(V)},
     * {@link #newKeySet() newKeySet()},
     * {@link #newKeySet(int) newKeySet(int)}.
     *
     * @since 1.8
     */
    public static class KeySetView<K, V> extends CollectionView<K, V, K>
            implements Set<K>, java.io.Serializable {
        private static final long serialVersionUID = 7249069246763182397L;
        private final V value;

        KeySetView(ConcurrentHashMap<K, V> map, V value) {  // non-public
            super(map);
            this.value = value;
        }

        /**
         * Returns the default mapped value for additions,
         * or {@code null} if additions are not supported.
         *
         * @return the default mapped value for additions, or {@code null}
         * if not supported
         */
        public V getMappedValue() {
            return value;
        }

        /**
         * {@inheritDoc}
         *
         * @throws NullPointerException if the specified key is null
         */
        public boolean contains(Object o) {
            return map.containsKey(o);
        }

        /**
         * Removes the key from this map view, by removing the key (and its
         * corresponding value) from the backing map.  This method does
         * nothing if the key is not in the map.
         *
         * @param o the key to be removed from the backing map
         * @return {@code true} if the backing map contained the specified key
         * @throws NullPointerException if the specified key is null
         */
        public boolean remove(Object o) {
            return map.remove(o) != null;
        }

        /**
         * @return an iterator over the keys of the backing map
         */
        public Iterator<K> iterator() {
            Node<K, V>[] t;
            ConcurrentHashMap<K, V> m = map;
            int f = (t = m.table) == null ? 0 : t.length;
            return new KeyIterator<K, V>(t, f, 0, f, m);
        }

        /**
         * Adds the specified key to this set view by mapping the key to
         * the default mapped value in the backing map, if defined.
         *
         * @param e key to be added
         * @return {@code true} if this set changed as a result of the call
         * @throws NullPointerException          if the specified key is null
         * @throws UnsupportedOperationException if no default mapped value
         *                                       for additions was provided
         */
        public boolean add(K e) {
            V v;
            if ((v = value) == null)
                throw new UnsupportedOperationException();
            return map.putVal(e, v, true) == null;
        }

        /**
         * Adds all of the elements in the specified collection to this set,
         * as if by calling {@link #add} on each one.
         *
         * @param c the elements to be inserted into this set
         * @return {@code true} if this set changed as a result of the call
         * @throws NullPointerException          if the collection or any of its
         *                                       elements are {@code null}
         * @throws UnsupportedOperationException if no default mapped value
         *                                       for additions was provided
         */
        public boolean addAll(Collection<? extends K> c) {
            boolean added = false;
            V v;
            if ((v = value) == null)
                throw new UnsupportedOperationException();
            for (K e : c) {
                if (map.putVal(e, v, true) == null)
                    added = true;
            }
            return added;
        }

        public int hashCode() {
            int h = 0;
            for (K e : this)
                h += e.hashCode();
            return h;
        }

        public boolean equals(Object o) {
            Set<?> c;
            return ((o instanceof Set) &&
                    ((c = (Set<?>) o) == this ||
                            (containsAll(c) && c.containsAll(this))));
        }

        public Spliterator<K> spliterator() {
            Node<K, V>[] t;
            ConcurrentHashMap<K, V> m = map;
            long n = m.sumCount();
            int f = (t = m.table) == null ? 0 : t.length;
            return new KeySpliterator<K, V>(t, f, 0, f, n < 0L ? 0L : n);
        }

        public void forEach(Consumer<? super K> action) {
            if (action == null) throw new NullPointerException();
            Node<K, V>[] t;
            if ((t = map.table) != null) {
                Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
                for (Node<K, V> p; (p = it.advance()) != null; )
                    action.accept(p.key);
            }
        }
    }

    /**
     * A view of a ConcurrentHashMap as a {@link Collection} of
     * values, in which additions are disabled. This class cannot be
     * directly instantiated. See {@link #values()}.
     */
    static final class ValuesView<K, V> extends CollectionView<K, V, V>
            implements Collection<V>, java.io.Serializable {
        private static final long serialVersionUID = 2249069246763182397L;

        ValuesView(ConcurrentHashMap<K, V> map) {
            super(map);
        }

        public final boolean contains(Object o) {
            return map.containsValue(o);
        }

        public final boolean remove(Object o) {
            if (o != null) {
                for (Iterator<V> it = iterator(); it.hasNext(); ) {
                    if (o.equals(it.next())) {
                        it.remove();
                        return true;
                    }
                }
            }
            return false;
        }

        public final Iterator<V> iterator() {
            ConcurrentHashMap<K, V> m = map;
            Node<K, V>[] t;
            int f = (t = m.table) == null ? 0 : t.length;
            return new ValueIterator<K, V>(t, f, 0, f, m);
        }

        public final boolean add(V e) {
            throw new UnsupportedOperationException();
        }

        public final boolean addAll(Collection<? extends V> c) {
            throw new UnsupportedOperationException();
        }

        public Spliterator<V> spliterator() {
            Node<K, V>[] t;
            ConcurrentHashMap<K, V> m = map;
            long n = m.sumCount();
            int f = (t = m.table) == null ? 0 : t.length;
            return new ValueSpliterator<K, V>(t, f, 0, f, n < 0L ? 0L : n);
        }

        public void forEach(Consumer<? super V> action) {
            if (action == null) throw new NullPointerException();
            Node<K, V>[] t;
            if ((t = map.table) != null) {
                Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
                for (Node<K, V> p; (p = it.advance()) != null; )
                    action.accept(p.val);
            }
        }
    }

    /**
     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
     * entries.  This class cannot be directly instantiated. See
     * {@link #entrySet()}.
     */
    static final class EntrySetView<K, V> extends CollectionView<K, V, Map.Entry<K, V>>
            implements Set<Map.Entry<K, V>>, java.io.Serializable {
        private static final long serialVersionUID = 2249069246763182397L;

        EntrySetView(ConcurrentHashMap<K, V> map) {
            super(map);
        }

        public boolean contains(Object o) {
            Object k, v, r;
            Map.Entry<?, ?> e;
            return ((o instanceof Map.Entry) &&
                    (k = (e = (Map.Entry<?, ?>) o).getKey()) != null &&
                    (r = map.get(k)) != null &&
                    (v = e.getValue()) != null &&
                    (v == r || v.equals(r)));
        }

        public boolean remove(Object o) {
            Object k, v;
            Map.Entry<?, ?> e;
            return ((o instanceof Map.Entry) &&
                    (k = (e = (Map.Entry<?, ?>) o).getKey()) != null &&
                    (v = e.getValue()) != null &&
                    map.remove(k, v));
        }

        /**
         * @return an iterator over the entries of the backing map
         */
        public Iterator<Map.Entry<K, V>> iterator() {
            ConcurrentHashMap<K, V> m = map;
            Node<K, V>[] t;
            int f = (t = m.table) == null ? 0 : t.length;
            return new EntryIterator<K, V>(t, f, 0, f, m);
        }

        public boolean add(Entry<K, V> e) {
            return map.putVal(e.getKey(), e.getValue(), false) == null;
        }

        public boolean addAll(Collection<? extends Entry<K, V>> c) {
            boolean added = false;
            for (Entry<K, V> e : c) {
                if (add(e))
                    added = true;
            }
            return added;
        }

        public final int hashCode() {
            int h = 0;
            Node<K, V>[] t;
            if ((t = map.table) != null) {
                Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
                for (Node<K, V> p; (p = it.advance()) != null; ) {
                    h += p.hashCode();
                }
            }
            return h;
        }

        public final boolean equals(Object o) {
            Set<?> c;
            return ((o instanceof Set) &&
                    ((c = (Set<?>) o) == this ||
                            (containsAll(c) && c.containsAll(this))));
        }

        public Spliterator<Map.Entry<K, V>> spliterator() {
            Node<K, V>[] t;
            ConcurrentHashMap<K, V> m = map;
            long n = m.sumCount();
            int f = (t = m.table) == null ? 0 : t.length;
            return new EntrySpliterator<K, V>(t, f, 0, f, n < 0L ? 0L : n, m);
        }

        public void forEach(Consumer<? super Map.Entry<K, V>> action) {
            if (action == null) throw new NullPointerException();
            Node<K, V>[] t;
            if ((t = map.table) != null) {
                Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length);
                for (Node<K, V> p; (p = it.advance()) != null; )
                    action.accept(new MapEntry<K, V>(p.key, p.val, map));
            }
        }

    }

    // -------------------------------------------------------

    /**
     * Base class for bulk tasks. Repeats some fields and code from
     * class Traverser, because we need to subclass CountedCompleter.
     */
    @SuppressWarnings("serial")
    abstract static class BulkTask<K, V, R> extends CountedCompleter<R> {
        Node<K, V>[] tab;        // same as Traverser
        Node<K, V> next;
        TableStack<K, V> stack, spare;
        int index;
        int baseIndex;
        int baseLimit;
        final int baseSize;
        int batch;              // split control

        BulkTask(BulkTask<K, V, ?> par, int b, int i, int f, Node<K, V>[] t) {
            super(par);
            this.batch = b;
            this.index = this.baseIndex = i;
            if ((this.tab = t) == null)
                this.baseSize = this.baseLimit = 0;
            else if (par == null)
                this.baseSize = this.baseLimit = t.length;
            else {
                this.baseLimit = f;
                this.baseSize = par.baseSize;
            }
        }

        /**
         * Same as Traverser version
         */
        final Node<K, V> advance() {
            Node<K, V> e;
            if ((e = next) != null)
                e = e.next;
            for (; ; ) {
                Node<K, V>[] t;
                int i, n;
                if (e != null)
                    return next = e;
                if (baseIndex >= baseLimit || (t = tab) == null ||
                        (n = t.length) <= (i = index) || i < 0)
                    return next = null;
                if ((e = tabAt(t, i)) != null && e.hash < 0) {
                    if (e instanceof ForwardingNode) {
                        tab = ((ForwardingNode<K, V>) e).nextTable;
                        e = null;
                        pushState(t, i, n);
                        continue;
                    } else if (e instanceof TreeBin)
                        e = ((TreeBin<K, V>) e).first;
                    else
                        e = null;
                }
                if (stack != null)
                    recoverState(n);
                else if ((index = i + baseSize) >= n)
                    index = ++baseIndex;
            }
        }

        private void pushState(Node<K, V>[] t, int i, int n) {
            TableStack<K, V> s = spare;
            if (s != null)
                spare = s.next;
            else
                s = new TableStack<K, V>();
            s.tab = t;
            s.length = n;
            s.index = i;
            s.next = stack;
            stack = s;
        }

        private void recoverState(int n) {
            TableStack<K, V> s;
            int len;
            while ((s = stack) != null && (index += (len = s.length)) >= n) {
                n = len;
                index = s.index;
                tab = s.tab;
                s.tab = null;
                TableStack<K, V> next = s.next;
                s.next = spare; // save for reuse
                stack = next;
                spare = s;
            }
            if (s == null && (index += baseSize) >= n)
                index = ++baseIndex;
        }
    }

    /*
     * Task classes. Coded in a regular but ugly format/style to
     * simplify checks that each variant differs in the right way from
     * others. The null screenings exist because compilers cannot tell
     * that we've already null-checked task arguments, so we force
     * simplest hoisted bypass to help avoid convoluted traps.
     */
    @SuppressWarnings("serial")
    static final class ForEachKeyTask<K, V>
            extends BulkTask<K, V, Void> {
        final Consumer<? super K> action;

        ForEachKeyTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 Consumer<? super K> action) {
            super(p, b, i, f, t);
            this.action = action;
        }

        public final void compute() {
            final Consumer<? super K> action;
            if ((action = this.action) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    new ForEachKeyTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    action).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; )
                    action.accept(p.key);
                propagateCompletion();
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ForEachValueTask<K, V>
            extends BulkTask<K, V, Void> {
        final Consumer<? super V> action;

        ForEachValueTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 Consumer<? super V> action) {
            super(p, b, i, f, t);
            this.action = action;
        }

        public final void compute() {
            final Consumer<? super V> action;
            if ((action = this.action) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    new ForEachValueTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    action).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; )
                    action.accept(p.val);
                propagateCompletion();
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ForEachEntryTask<K, V>
            extends BulkTask<K, V, Void> {
        final Consumer<? super Entry<K, V>> action;

        ForEachEntryTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 Consumer<? super Entry<K, V>> action) {
            super(p, b, i, f, t);
            this.action = action;
        }

        public final void compute() {
            final Consumer<? super Entry<K, V>> action;
            if ((action = this.action) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    new ForEachEntryTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    action).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; )
                    action.accept(p);
                propagateCompletion();
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ForEachMappingTask<K, V>
            extends BulkTask<K, V, Void> {
        final BiConsumer<? super K, ? super V> action;

        ForEachMappingTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 BiConsumer<? super K, ? super V> action) {
            super(p, b, i, f, t);
            this.action = action;
        }

        public final void compute() {
            final BiConsumer<? super K, ? super V> action;
            if ((action = this.action) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    new ForEachMappingTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    action).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; )
                    action.accept(p.key, p.val);
                propagateCompletion();
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ForEachTransformedKeyTask<K, V, U>
            extends BulkTask<K, V, Void> {
        final Function<? super K, ? extends U> transformer;
        final Consumer<? super U> action;

        ForEachTransformedKeyTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
            super(p, b, i, f, t);
            this.transformer = transformer;
            this.action = action;
        }

        public final void compute() {
            final Function<? super K, ? extends U> transformer;
            final Consumer<? super U> action;
            if ((transformer = this.transformer) != null &&
                    (action = this.action) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    new ForEachTransformedKeyTask<K, V, U>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    transformer, action).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; ) {
                    U u;
                    if ((u = transformer.apply(p.key)) != null)
                        action.accept(u);
                }
                propagateCompletion();
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ForEachTransformedValueTask<K, V, U>
            extends BulkTask<K, V, Void> {
        final Function<? super V, ? extends U> transformer;
        final Consumer<? super U> action;

        ForEachTransformedValueTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
            super(p, b, i, f, t);
            this.transformer = transformer;
            this.action = action;
        }

        public final void compute() {
            final Function<? super V, ? extends U> transformer;
            final Consumer<? super U> action;
            if ((transformer = this.transformer) != null &&
                    (action = this.action) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    new ForEachTransformedValueTask<K, V, U>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    transformer, action).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; ) {
                    U u;
                    if ((u = transformer.apply(p.val)) != null)
                        action.accept(u);
                }
                propagateCompletion();
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ForEachTransformedEntryTask<K, V, U>
            extends BulkTask<K, V, Void> {
        final Function<Map.Entry<K, V>, ? extends U> transformer;
        final Consumer<? super U> action;

        ForEachTransformedEntryTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 Function<Map.Entry<K, V>, ? extends U> transformer, Consumer<? super U> action) {
            super(p, b, i, f, t);
            this.transformer = transformer;
            this.action = action;
        }

        public final void compute() {
            final Function<Map.Entry<K, V>, ? extends U> transformer;
            final Consumer<? super U> action;
            if ((transformer = this.transformer) != null &&
                    (action = this.action) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    new ForEachTransformedEntryTask<K, V, U>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    transformer, action).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; ) {
                    U u;
                    if ((u = transformer.apply(p)) != null)
                        action.accept(u);
                }
                propagateCompletion();
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ForEachTransformedMappingTask<K, V, U>
            extends BulkTask<K, V, Void> {
        final BiFunction<? super K, ? super V, ? extends U> transformer;
        final Consumer<? super U> action;

        ForEachTransformedMappingTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 BiFunction<? super K, ? super V, ? extends U> transformer,
                 Consumer<? super U> action) {
            super(p, b, i, f, t);
            this.transformer = transformer;
            this.action = action;
        }

        public final void compute() {
            final BiFunction<? super K, ? super V, ? extends U> transformer;
            final Consumer<? super U> action;
            if ((transformer = this.transformer) != null &&
                    (action = this.action) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    new ForEachTransformedMappingTask<K, V, U>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    transformer, action).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; ) {
                    U u;
                    if ((u = transformer.apply(p.key, p.val)) != null)
                        action.accept(u);
                }
                propagateCompletion();
            }
        }
    }

    @SuppressWarnings("serial")
    static final class SearchKeysTask<K, V, U>
            extends BulkTask<K, V, U> {
        final Function<? super K, ? extends U> searchFunction;
        final AtomicReference<U> result;

        SearchKeysTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 Function<? super K, ? extends U> searchFunction,
                 AtomicReference<U> result) {
            super(p, b, i, f, t);
            this.searchFunction = searchFunction;
            this.result = result;
        }

        public final U getRawResult() {
            return result.get();
        }

        public final void compute() {
            final Function<? super K, ? extends U> searchFunction;
            final AtomicReference<U> result;
            if ((searchFunction = this.searchFunction) != null &&
                    (result = this.result) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    if (result.get() != null)
                        return;
                    addToPendingCount(1);
                    new SearchKeysTask<K, V, U>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    searchFunction, result).fork();
                }
                while (result.get() == null) {
                    U u;
                    Node<K, V> p;
                    if ((p = advance()) == null) {
                        propagateCompletion();
                        break;
                    }
                    if ((u = searchFunction.apply(p.key)) != null) {
                        if (result.compareAndSet(null, u))
                            quietlyCompleteRoot();
                        break;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class SearchValuesTask<K, V, U>
            extends BulkTask<K, V, U> {
        final Function<? super V, ? extends U> searchFunction;
        final AtomicReference<U> result;

        SearchValuesTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 Function<? super V, ? extends U> searchFunction,
                 AtomicReference<U> result) {
            super(p, b, i, f, t);
            this.searchFunction = searchFunction;
            this.result = result;
        }

        public final U getRawResult() {
            return result.get();
        }

        public final void compute() {
            final Function<? super V, ? extends U> searchFunction;
            final AtomicReference<U> result;
            if ((searchFunction = this.searchFunction) != null &&
                    (result = this.result) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    if (result.get() != null)
                        return;
                    addToPendingCount(1);
                    new SearchValuesTask<K, V, U>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    searchFunction, result).fork();
                }
                while (result.get() == null) {
                    U u;
                    Node<K, V> p;
                    if ((p = advance()) == null) {
                        propagateCompletion();
                        break;
                    }
                    if ((u = searchFunction.apply(p.val)) != null) {
                        if (result.compareAndSet(null, u))
                            quietlyCompleteRoot();
                        break;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class SearchEntriesTask<K, V, U>
            extends BulkTask<K, V, U> {
        final Function<Entry<K, V>, ? extends U> searchFunction;
        final AtomicReference<U> result;

        SearchEntriesTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 Function<Entry<K, V>, ? extends U> searchFunction,
                 AtomicReference<U> result) {
            super(p, b, i, f, t);
            this.searchFunction = searchFunction;
            this.result = result;
        }

        public final U getRawResult() {
            return result.get();
        }

        public final void compute() {
            final Function<Entry<K, V>, ? extends U> searchFunction;
            final AtomicReference<U> result;
            if ((searchFunction = this.searchFunction) != null &&
                    (result = this.result) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    if (result.get() != null)
                        return;
                    addToPendingCount(1);
                    new SearchEntriesTask<K, V, U>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    searchFunction, result).fork();
                }
                while (result.get() == null) {
                    U u;
                    Node<K, V> p;
                    if ((p = advance()) == null) {
                        propagateCompletion();
                        break;
                    }
                    if ((u = searchFunction.apply(p)) != null) {
                        if (result.compareAndSet(null, u))
                            quietlyCompleteRoot();
                        return;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class SearchMappingsTask<K, V, U>
            extends BulkTask<K, V, U> {
        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
        final AtomicReference<U> result;

        SearchMappingsTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 BiFunction<? super K, ? super V, ? extends U> searchFunction,
                 AtomicReference<U> result) {
            super(p, b, i, f, t);
            this.searchFunction = searchFunction;
            this.result = result;
        }

        public final U getRawResult() {
            return result.get();
        }

        public final void compute() {
            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
            final AtomicReference<U> result;
            if ((searchFunction = this.searchFunction) != null &&
                    (result = this.result) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    if (result.get() != null)
                        return;
                    addToPendingCount(1);
                    new SearchMappingsTask<K, V, U>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    searchFunction, result).fork();
                }
                while (result.get() == null) {
                    U u;
                    Node<K, V> p;
                    if ((p = advance()) == null) {
                        propagateCompletion();
                        break;
                    }
                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
                        if (result.compareAndSet(null, u))
                            quietlyCompleteRoot();
                        break;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ReduceKeysTask<K, V>
            extends BulkTask<K, V, K> {
        final BiFunction<? super K, ? super K, ? extends K> reducer;
        K result;
        ReduceKeysTask<K, V> rights, nextRight;

        ReduceKeysTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 ReduceKeysTask<K, V> nextRight,
                 BiFunction<? super K, ? super K, ? extends K> reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.reducer = reducer;
        }

        public final K getRawResult() {
            return result;
        }

        public final void compute() {
            final BiFunction<? super K, ? super K, ? extends K> reducer;
            if ((reducer = this.reducer) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new ReduceKeysTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, reducer)).fork();
                }
                K r = null;
                for (Node<K, V> p; (p = advance()) != null; ) {
                    K u = p.key;
                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
                }
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    ReduceKeysTask<K, V>
                            t = (ReduceKeysTask<K, V>) c,
                            s = t.rights;
                    while (s != null) {
                        K tr, sr;
                        if ((sr = s.result) != null)
                            t.result = (((tr = t.result) == null) ? sr :
                                    reducer.apply(tr, sr));
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ReduceValuesTask<K, V>
            extends BulkTask<K, V, V> {
        final BiFunction<? super V, ? super V, ? extends V> reducer;
        V result;
        ReduceValuesTask<K, V> rights, nextRight;

        ReduceValuesTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 ReduceValuesTask<K, V> nextRight,
                 BiFunction<? super V, ? super V, ? extends V> reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.reducer = reducer;
        }

        public final V getRawResult() {
            return result;
        }

        public final void compute() {
            final BiFunction<? super V, ? super V, ? extends V> reducer;
            if ((reducer = this.reducer) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new ReduceValuesTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, reducer)).fork();
                }
                V r = null;
                for (Node<K, V> p; (p = advance()) != null; ) {
                    V v = p.val;
                    r = (r == null) ? v : reducer.apply(r, v);
                }
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    ReduceValuesTask<K, V>
                            t = (ReduceValuesTask<K, V>) c,
                            s = t.rights;
                    while (s != null) {
                        V tr, sr;
                        if ((sr = s.result) != null)
                            t.result = (((tr = t.result) == null) ? sr :
                                    reducer.apply(tr, sr));
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class ReduceEntriesTask<K, V>
            extends BulkTask<K, V, Map.Entry<K, V>> {
        final BiFunction<Map.Entry<K, V>, Map.Entry<K, V>, ? extends Map.Entry<K, V>> reducer;
        Map.Entry<K, V> result;
        ReduceEntriesTask<K, V> rights, nextRight;

        ReduceEntriesTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 ReduceEntriesTask<K, V> nextRight,
                 BiFunction<Entry<K, V>, Map.Entry<K, V>, ? extends Map.Entry<K, V>> reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.reducer = reducer;
        }

        public final Map.Entry<K, V> getRawResult() {
            return result;
        }

        public final void compute() {
            final BiFunction<Map.Entry<K, V>, Map.Entry<K, V>, ? extends Map.Entry<K, V>> reducer;
            if ((reducer = this.reducer) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new ReduceEntriesTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, reducer)).fork();
                }
                Map.Entry<K, V> r = null;
                for (Node<K, V> p; (p = advance()) != null; )
                    r = (r == null) ? p : reducer.apply(r, p);
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    ReduceEntriesTask<K, V>
                            t = (ReduceEntriesTask<K, V>) c,
                            s = t.rights;
                    while (s != null) {
                        Map.Entry<K, V> tr, sr;
                        if ((sr = s.result) != null)
                            t.result = (((tr = t.result) == null) ? sr :
                                    reducer.apply(tr, sr));
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceKeysTask<K, V, U>
            extends BulkTask<K, V, U> {
        final Function<? super K, ? extends U> transformer;
        final BiFunction<? super U, ? super U, ? extends U> reducer;
        U result;
        MapReduceKeysTask<K, V, U> rights, nextRight;

        MapReduceKeysTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 MapReduceKeysTask<K, V, U> nextRight,
                 Function<? super K, ? extends U> transformer,
                 BiFunction<? super U, ? super U, ? extends U> reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.transformer = transformer;
            this.reducer = reducer;
        }

        public final U getRawResult() {
            return result;
        }

        public final void compute() {
            final Function<? super K, ? extends U> transformer;
            final BiFunction<? super U, ? super U, ? extends U> reducer;
            if ((transformer = this.transformer) != null &&
                    (reducer = this.reducer) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new MapReduceKeysTask<K, V, U>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, transformer, reducer)).fork();
                }
                U r = null;
                for (Node<K, V> p; (p = advance()) != null; ) {
                    U u;
                    if ((u = transformer.apply(p.key)) != null)
                        r = (r == null) ? u : reducer.apply(r, u);
                }
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceKeysTask<K, V, U>
                            t = (MapReduceKeysTask<K, V, U>) c,
                            s = t.rights;
                    while (s != null) {
                        U tr, sr;
                        if ((sr = s.result) != null)
                            t.result = (((tr = t.result) == null) ? sr :
                                    reducer.apply(tr, sr));
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceValuesTask<K, V, U>
            extends BulkTask<K, V, U> {
        final Function<? super V, ? extends U> transformer;
        final BiFunction<? super U, ? super U, ? extends U> reducer;
        U result;
        MapReduceValuesTask<K, V, U> rights, nextRight;

        MapReduceValuesTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 MapReduceValuesTask<K, V, U> nextRight,
                 Function<? super V, ? extends U> transformer,
                 BiFunction<? super U, ? super U, ? extends U> reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.transformer = transformer;
            this.reducer = reducer;
        }

        public final U getRawResult() {
            return result;
        }

        public final void compute() {
            final Function<? super V, ? extends U> transformer;
            final BiFunction<? super U, ? super U, ? extends U> reducer;
            if ((transformer = this.transformer) != null &&
                    (reducer = this.reducer) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new MapReduceValuesTask<K, V, U>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, transformer, reducer)).fork();
                }
                U r = null;
                for (Node<K, V> p; (p = advance()) != null; ) {
                    U u;
                    if ((u = transformer.apply(p.val)) != null)
                        r = (r == null) ? u : reducer.apply(r, u);
                }
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceValuesTask<K, V, U>
                            t = (MapReduceValuesTask<K, V, U>) c,
                            s = t.rights;
                    while (s != null) {
                        U tr, sr;
                        if ((sr = s.result) != null)
                            t.result = (((tr = t.result) == null) ? sr :
                                    reducer.apply(tr, sr));
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceEntriesTask<K, V, U>
            extends BulkTask<K, V, U> {
        final Function<Map.Entry<K, V>, ? extends U> transformer;
        final BiFunction<? super U, ? super U, ? extends U> reducer;
        U result;
        MapReduceEntriesTask<K, V, U> rights, nextRight;

        MapReduceEntriesTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 MapReduceEntriesTask<K, V, U> nextRight,
                 Function<Map.Entry<K, V>, ? extends U> transformer,
                 BiFunction<? super U, ? super U, ? extends U> reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.transformer = transformer;
            this.reducer = reducer;
        }

        public final U getRawResult() {
            return result;
        }

        public final void compute() {
            final Function<Map.Entry<K, V>, ? extends U> transformer;
            final BiFunction<? super U, ? super U, ? extends U> reducer;
            if ((transformer = this.transformer) != null &&
                    (reducer = this.reducer) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new MapReduceEntriesTask<K, V, U>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, transformer, reducer)).fork();
                }
                U r = null;
                for (Node<K, V> p; (p = advance()) != null; ) {
                    U u;
                    if ((u = transformer.apply(p)) != null)
                        r = (r == null) ? u : reducer.apply(r, u);
                }
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceEntriesTask<K, V, U>
                            t = (MapReduceEntriesTask<K, V, U>) c,
                            s = t.rights;
                    while (s != null) {
                        U tr, sr;
                        if ((sr = s.result) != null)
                            t.result = (((tr = t.result) == null) ? sr :
                                    reducer.apply(tr, sr));
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceMappingsTask<K, V, U>
            extends BulkTask<K, V, U> {
        final BiFunction<? super K, ? super V, ? extends U> transformer;
        final BiFunction<? super U, ? super U, ? extends U> reducer;
        U result;
        MapReduceMappingsTask<K, V, U> rights, nextRight;

        MapReduceMappingsTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 MapReduceMappingsTask<K, V, U> nextRight,
                 BiFunction<? super K, ? super V, ? extends U> transformer,
                 BiFunction<? super U, ? super U, ? extends U> reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.transformer = transformer;
            this.reducer = reducer;
        }

        public final U getRawResult() {
            return result;
        }

        public final void compute() {
            final BiFunction<? super K, ? super V, ? extends U> transformer;
            final BiFunction<? super U, ? super U, ? extends U> reducer;
            if ((transformer = this.transformer) != null &&
                    (reducer = this.reducer) != null) {
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new MapReduceMappingsTask<K, V, U>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, transformer, reducer)).fork();
                }
                U r = null;
                for (Node<K, V> p; (p = advance()) != null; ) {
                    U u;
                    if ((u = transformer.apply(p.key, p.val)) != null)
                        r = (r == null) ? u : reducer.apply(r, u);
                }
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceMappingsTask<K, V, U>
                            t = (MapReduceMappingsTask<K, V, U>) c,
                            s = t.rights;
                    while (s != null) {
                        U tr, sr;
                        if ((sr = s.result) != null)
                            t.result = (((tr = t.result) == null) ? sr :
                                    reducer.apply(tr, sr));
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceKeysToDoubleTask<K, V>
            extends BulkTask<K, V, Double> {
        final ToDoubleFunction<? super K> transformer;
        final DoubleBinaryOperator reducer;
        final double basis;
        double result;
        MapReduceKeysToDoubleTask<K, V> rights, nextRight;

        MapReduceKeysToDoubleTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 MapReduceKeysToDoubleTask<K, V> nextRight,
                 ToDoubleFunction<? super K> transformer,
                 double basis,
                 DoubleBinaryOperator reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis;
            this.reducer = reducer;
        }

        public final Double getRawResult() {
            return result;
        }

        public final void compute() {
            final ToDoubleFunction<? super K> transformer;
            final DoubleBinaryOperator reducer;
            if ((transformer = this.transformer) != null &&
                    (reducer = this.reducer) != null) {
                double r = this.basis;
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new MapReduceKeysToDoubleTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, transformer, r, reducer)).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; )
                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceKeysToDoubleTask<K, V>
                            t = (MapReduceKeysToDoubleTask<K, V>) c,
                            s = t.rights;
                    while (s != null) {
                        t.result = reducer.applyAsDouble(t.result, s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceValuesToDoubleTask<K, V>
            extends BulkTask<K, V, Double> {
        final ToDoubleFunction<? super V> transformer;
        final DoubleBinaryOperator reducer;
        final double basis;
        double result;
        MapReduceValuesToDoubleTask<K, V> rights, nextRight;

        MapReduceValuesToDoubleTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 MapReduceValuesToDoubleTask<K, V> nextRight,
                 ToDoubleFunction<? super V> transformer,
                 double basis,
                 DoubleBinaryOperator reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis;
            this.reducer = reducer;
        }

        public final Double getRawResult() {
            return result;
        }

        public final void compute() {
            final ToDoubleFunction<? super V> transformer;
            final DoubleBinaryOperator reducer;
            if ((transformer = this.transformer) != null &&
                    (reducer = this.reducer) != null) {
                double r = this.basis;
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new MapReduceValuesToDoubleTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, transformer, r, reducer)).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; )
                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceValuesToDoubleTask<K, V>
                            t = (MapReduceValuesToDoubleTask<K, V>) c,
                            s = t.rights;
                    while (s != null) {
                        t.result = reducer.applyAsDouble(t.result, s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceEntriesToDoubleTask<K, V>
            extends BulkTask<K, V, Double> {
        final ToDoubleFunction<Map.Entry<K, V>> transformer;
        final DoubleBinaryOperator reducer;
        final double basis;
        double result;
        MapReduceEntriesToDoubleTask<K, V> rights, nextRight;

        MapReduceEntriesToDoubleTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 MapReduceEntriesToDoubleTask<K, V> nextRight,
                 ToDoubleFunction<Map.Entry<K, V>> transformer,
                 double basis,
                 DoubleBinaryOperator reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis;
            this.reducer = reducer;
        }

        public final Double getRawResult() {
            return result;
        }

        public final void compute() {
            final ToDoubleFunction<Map.Entry<K, V>> transformer;
            final DoubleBinaryOperator reducer;
            if ((transformer = this.transformer) != null &&
                    (reducer = this.reducer) != null) {
                double r = this.basis;
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new MapReduceEntriesToDoubleTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, transformer, r, reducer)).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; )
                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceEntriesToDoubleTask<K, V>
                            t = (MapReduceEntriesToDoubleTask<K, V>) c,
                            s = t.rights;
                    while (s != null) {
                        t.result = reducer.applyAsDouble(t.result, s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceMappingsToDoubleTask<K, V>
            extends BulkTask<K, V, Double> {
        final ToDoubleBiFunction<? super K, ? super V> transformer;
        final DoubleBinaryOperator reducer;
        final double basis;
        double result;
        MapReduceMappingsToDoubleTask<K, V> rights, nextRight;

        MapReduceMappingsToDoubleTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 MapReduceMappingsToDoubleTask<K, V> nextRight,
                 ToDoubleBiFunction<? super K, ? super V> transformer,
                 double basis,
                 DoubleBinaryOperator reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis;
            this.reducer = reducer;
        }

        public final Double getRawResult() {
            return result;
        }

        public final void compute() {
            final ToDoubleBiFunction<? super K, ? super V> transformer;
            final DoubleBinaryOperator reducer;
            if ((transformer = this.transformer) != null &&
                    (reducer = this.reducer) != null) {
                double r = this.basis;
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new MapReduceMappingsToDoubleTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, transformer, r, reducer)).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; )
                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceMappingsToDoubleTask<K, V>
                            t = (MapReduceMappingsToDoubleTask<K, V>) c,
                            s = t.rights;
                    while (s != null) {
                        t.result = reducer.applyAsDouble(t.result, s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceKeysToLongTask<K, V>
            extends BulkTask<K, V, Long> {
        final ToLongFunction<? super K> transformer;
        final LongBinaryOperator reducer;
        final long basis;
        long result;
        MapReduceKeysToLongTask<K, V> rights, nextRight;

        MapReduceKeysToLongTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 MapReduceKeysToLongTask<K, V> nextRight,
                 ToLongFunction<? super K> transformer,
                 long basis,
                 LongBinaryOperator reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis;
            this.reducer = reducer;
        }

        public final Long getRawResult() {
            return result;
        }

        public final void compute() {
            final ToLongFunction<? super K> transformer;
            final LongBinaryOperator reducer;
            if ((transformer = this.transformer) != null &&
                    (reducer = this.reducer) != null) {
                long r = this.basis;
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new MapReduceKeysToLongTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, transformer, r, reducer)).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; )
                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceKeysToLongTask<K, V>
                            t = (MapReduceKeysToLongTask<K, V>) c,
                            s = t.rights;
                    while (s != null) {
                        t.result = reducer.applyAsLong(t.result, s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceValuesToLongTask<K, V>
            extends BulkTask<K, V, Long> {
        final ToLongFunction<? super V> transformer;
        final LongBinaryOperator reducer;
        final long basis;
        long result;
        MapReduceValuesToLongTask<K, V> rights, nextRight;

        MapReduceValuesToLongTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 MapReduceValuesToLongTask<K, V> nextRight,
                 ToLongFunction<? super V> transformer,
                 long basis,
                 LongBinaryOperator reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis;
            this.reducer = reducer;
        }

        public final Long getRawResult() {
            return result;
        }

        public final void compute() {
            final ToLongFunction<? super V> transformer;
            final LongBinaryOperator reducer;
            if ((transformer = this.transformer) != null &&
                    (reducer = this.reducer) != null) {
                long r = this.basis;
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new MapReduceValuesToLongTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, transformer, r, reducer)).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; )
                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceValuesToLongTask<K, V>
                            t = (MapReduceValuesToLongTask<K, V>) c,
                            s = t.rights;
                    while (s != null) {
                        t.result = reducer.applyAsLong(t.result, s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceEntriesToLongTask<K, V>
            extends BulkTask<K, V, Long> {
        final ToLongFunction<Map.Entry<K, V>> transformer;
        final LongBinaryOperator reducer;
        final long basis;
        long result;
        MapReduceEntriesToLongTask<K, V> rights, nextRight;

        MapReduceEntriesToLongTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 MapReduceEntriesToLongTask<K, V> nextRight,
                 ToLongFunction<Map.Entry<K, V>> transformer,
                 long basis,
                 LongBinaryOperator reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis;
            this.reducer = reducer;
        }

        public final Long getRawResult() {
            return result;
        }

        public final void compute() {
            final ToLongFunction<Map.Entry<K, V>> transformer;
            final LongBinaryOperator reducer;
            if ((transformer = this.transformer) != null &&
                    (reducer = this.reducer) != null) {
                long r = this.basis;
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new MapReduceEntriesToLongTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, transformer, r, reducer)).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; )
                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceEntriesToLongTask<K, V>
                            t = (MapReduceEntriesToLongTask<K, V>) c,
                            s = t.rights;
                    while (s != null) {
                        t.result = reducer.applyAsLong(t.result, s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceMappingsToLongTask<K, V>
            extends BulkTask<K, V, Long> {
        final ToLongBiFunction<? super K, ? super V> transformer;
        final LongBinaryOperator reducer;
        final long basis;
        long result;
        MapReduceMappingsToLongTask<K, V> rights, nextRight;

        MapReduceMappingsToLongTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 MapReduceMappingsToLongTask<K, V> nextRight,
                 ToLongBiFunction<? super K, ? super V> transformer,
                 long basis,
                 LongBinaryOperator reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis;
            this.reducer = reducer;
        }

        public final Long getRawResult() {
            return result;
        }

        public final void compute() {
            final ToLongBiFunction<? super K, ? super V> transformer;
            final LongBinaryOperator reducer;
            if ((transformer = this.transformer) != null &&
                    (reducer = this.reducer) != null) {
                long r = this.basis;
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new MapReduceMappingsToLongTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, transformer, r, reducer)).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; )
                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceMappingsToLongTask<K, V>
                            t = (MapReduceMappingsToLongTask<K, V>) c,
                            s = t.rights;
                    while (s != null) {
                        t.result = reducer.applyAsLong(t.result, s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceKeysToIntTask<K, V>
            extends BulkTask<K, V, Integer> {
        final ToIntFunction<? super K> transformer;
        final IntBinaryOperator reducer;
        final int basis;
        int result;
        MapReduceKeysToIntTask<K, V> rights, nextRight;

        MapReduceKeysToIntTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 MapReduceKeysToIntTask<K, V> nextRight,
                 ToIntFunction<? super K> transformer,
                 int basis,
                 IntBinaryOperator reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis;
            this.reducer = reducer;
        }

        public final Integer getRawResult() {
            return result;
        }

        public final void compute() {
            final ToIntFunction<? super K> transformer;
            final IntBinaryOperator reducer;
            if ((transformer = this.transformer) != null &&
                    (reducer = this.reducer) != null) {
                int r = this.basis;
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new MapReduceKeysToIntTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, transformer, r, reducer)).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; )
                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceKeysToIntTask<K, V>
                            t = (MapReduceKeysToIntTask<K, V>) c,
                            s = t.rights;
                    while (s != null) {
                        t.result = reducer.applyAsInt(t.result, s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceValuesToIntTask<K, V>
            extends BulkTask<K, V, Integer> {
        final ToIntFunction<? super V> transformer;
        final IntBinaryOperator reducer;
        final int basis;
        int result;
        MapReduceValuesToIntTask<K, V> rights, nextRight;

        MapReduceValuesToIntTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 MapReduceValuesToIntTask<K, V> nextRight,
                 ToIntFunction<? super V> transformer,
                 int basis,
                 IntBinaryOperator reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis;
            this.reducer = reducer;
        }

        public final Integer getRawResult() {
            return result;
        }

        public final void compute() {
            final ToIntFunction<? super V> transformer;
            final IntBinaryOperator reducer;
            if ((transformer = this.transformer) != null &&
                    (reducer = this.reducer) != null) {
                int r = this.basis;
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new MapReduceValuesToIntTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, transformer, r, reducer)).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; )
                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceValuesToIntTask<K, V>
                            t = (MapReduceValuesToIntTask<K, V>) c,
                            s = t.rights;
                    while (s != null) {
                        t.result = reducer.applyAsInt(t.result, s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceEntriesToIntTask<K, V>
            extends BulkTask<K, V, Integer> {
        final ToIntFunction<Map.Entry<K, V>> transformer;
        final IntBinaryOperator reducer;
        final int basis;
        int result;
        MapReduceEntriesToIntTask<K, V> rights, nextRight;

        MapReduceEntriesToIntTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 MapReduceEntriesToIntTask<K, V> nextRight,
                 ToIntFunction<Map.Entry<K, V>> transformer,
                 int basis,
                 IntBinaryOperator reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis;
            this.reducer = reducer;
        }

        public final Integer getRawResult() {
            return result;
        }

        public final void compute() {
            final ToIntFunction<Map.Entry<K, V>> transformer;
            final IntBinaryOperator reducer;
            if ((transformer = this.transformer) != null &&
                    (reducer = this.reducer) != null) {
                int r = this.basis;
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new MapReduceEntriesToIntTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, transformer, r, reducer)).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; )
                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceEntriesToIntTask<K, V>
                            t = (MapReduceEntriesToIntTask<K, V>) c,
                            s = t.rights;
                    while (s != null) {
                        t.result = reducer.applyAsInt(t.result, s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    @SuppressWarnings("serial")
    static final class MapReduceMappingsToIntTask<K, V>
            extends BulkTask<K, V, Integer> {
        final ToIntBiFunction<? super K, ? super V> transformer;
        final IntBinaryOperator reducer;
        final int basis;
        int result;
        MapReduceMappingsToIntTask<K, V> rights, nextRight;

        MapReduceMappingsToIntTask
                (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t,
                 MapReduceMappingsToIntTask<K, V> nextRight,
                 ToIntBiFunction<? super K, ? super V> transformer,
                 int basis,
                 IntBinaryOperator reducer) {
            super(p, b, i, f, t);
            this.nextRight = nextRight;
            this.transformer = transformer;
            this.basis = basis;
            this.reducer = reducer;
        }

        public final Integer getRawResult() {
            return result;
        }

        public final void compute() {
            final ToIntBiFunction<? super K, ? super V> transformer;
            final IntBinaryOperator reducer;
            if ((transformer = this.transformer) != null &&
                    (reducer = this.reducer) != null) {
                int r = this.basis;
                for (int i = baseIndex, f, h; batch > 0 &&
                        (h = ((f = baseLimit) + i) >>> 1) > i; ) {
                    addToPendingCount(1);
                    (rights = new MapReduceMappingsToIntTask<K, V>
                            (this, batch >>>= 1, baseLimit = h, f, tab,
                                    rights, transformer, r, reducer)).fork();
                }
                for (Node<K, V> p; (p = advance()) != null; )
                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
                result = r;
                CountedCompleter<?> c;
                for (c = firstComplete(); c != null; c = c.nextComplete()) {
                    @SuppressWarnings("unchecked")
                    MapReduceMappingsToIntTask<K, V>
                            t = (MapReduceMappingsToIntTask<K, V>) c,
                            s = t.rights;
                    while (s != null) {
                        t.result = reducer.applyAsInt(t.result, s.result);
                        s = t.rights = s.nextRight;
                    }
                }
            }
        }
    }

    // Unsafe mechanics
    private static final sun.misc.Unsafe U;
    private static final long SIZECTL;
    private static final long TRANSFERINDEX;
    private static final long BASECOUNT;
    private static final long CELLSBUSY;
    private static final long CELLVALUE;
    private static final long ABASE;
    private static final int ASHIFT;

    static {
        try {
            U = sun.misc.Unsafe.getUnsafe();
            Class<?> k = ConcurrentHashMap.class;
            SIZECTL = U.objectFieldOffset
                    (k.getDeclaredField("sizeCtl"));
            TRANSFERINDEX = U.objectFieldOffset
                    (k.getDeclaredField("transferIndex"));
            BASECOUNT = U.objectFieldOffset
                    (k.getDeclaredField("baseCount"));
            CELLSBUSY = U.objectFieldOffset
                    (k.getDeclaredField("cellsBusy"));
            Class<?> ck = CounterCell.class;
            CELLVALUE = U.objectFieldOffset
                    (ck.getDeclaredField("value"));
            Class<?> ak = Node[].class;
            ABASE = U.arrayBaseOffset(ak);
            int scale = U.arrayIndexScale(ak);
            if ((scale & (scale - 1)) != 0)
                throw new Error("data type scale not a power of two");
            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
        } catch (Exception e) {
            throw new Error(e);
        }
    }
}
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018-03-22 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
容器服务
腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档