手把手教你用1行代码实现人脸识别 -- Python Face_recognition

环境要求:

Ubuntu17.10

Python 2.7.14

环境搭建:

1. 安装 Ubuntu17.10 > 安装步骤在这里

2. 安装 Python2.7.14 (Ubuntu17.10 默认Python版本为2.7.14)

3. 安装 git 、cmake 、 python-pip

# 安装 git $ sudo apt-get install -y git # 安装 cmake $ sudo apt-get install -y cmake # 安装 python-pip $ sudo apt-get install -y python-pip

4. 安装编译dlib

安装face_recognition这个之前需要先安装编译dlib

# 编译dlib前先安装 boost $ sudo apt-get install libboost-all-dev # 开始编译dlib # 克隆dlib源代码 $ git clone https://github.com/davisking/dlib.git $ cd dlib $ mkdir build $ cd build $ cmake .. -DDLIB_USE_CUDA=0 -DUSE_AVX_INSTRUCTIONS=1 $ cmake --build .(注意中间有个空格) $ cd .. $ python setup.py install --yes USE_AVX_INSTRUCTIONS --no DLIB_USE_CUDA

5. 安装 face_recognition

# 安装 face_recognition $ pip install face_recognition # 安装face_recognition过程中会自动安装 numpy、scipy 等

环境搭建完成后,在终端输入 face_recognition 命令查看是否成功

实现人脸识别:

示例一(1行代码实现人脸识别):

1. 首先你需要提供一个文件夹,里面是所有你希望系统认识的人的图片。其中每个人一张图片,图片以人的名字命名:

known_people文件夹下有babe、成龙、容祖儿的照片

2. 接下来,你需要准备另一个文件夹,里面是你要识别的图片:

unknown_pic文件夹下是要识别的图片,其中韩红是机器不认识的

3. 然后你就可以运行face_recognition命令了,把刚刚准备的两个文件夹作为参数传入,命令就会返回需要识别的图片中都出现了谁:

识别成功!!!

示例二(识别图片中的所有人脸并显示出来):

# filename : find_faces_in_picture.py # -*- coding: utf-8 -*- # 导入pil模块 ,可用命令安装 apt-get install python-Imagingfrom PIL import Image # 导入face_recogntion模块,可用命令安装 pip install face_recognition import face_recognition # 将jpg文件加载到numpy 数组中 image = face_recognition.load_image_file("/opt/face/unknown_pic/all_star.jpg") # 使用默认的给予HOG模型查找图像中所有人脸 # 这个方法已经相当准确了,但还是不如CNN模型那么准确,因为没有使用GPU加速 # 另请参见: find_faces_in_picture_cnn.py face_locations = face_recognition.face_locations(image) # 使用CNN模型 # face_locations = face_recognition. face_locations(image, number_of_times_to_upsample=0, model="cnn") # 打印:我从图片中找到了 多少 张人脸 print("I found {} face(s) in this photograph.".format(len(face_locations))) # 循环找到的所有人脸 for face_location in face_locations: # 打印每张脸的位置信息 top, right, bottom, left = face_location print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right)) # 指定人脸的位置信息,然后显示人脸图片 face_image = image[top:bottom, left:right] pil_image = Image.fromarray(face_image) pil_image.show()

用于识别的图片

# 执行python文件 $ python find_faces_in_picture.py

从图片中识别出7张人脸,并显示出来

示例三(自动识别人脸特征):

# filename : find_facial_features_in_picture.py # -*- coding: utf-8 -*- # 导入pil模块 ,可用命令安装 apt-get install python-Imaging from PIL import Image, ImageDraw # 导入face_recogntion模块,可用命令安装 pip install face_recognition import face_recognition # 将jpg文件加载到numpy 数组中 image = face_recognition.load_image_file("biden.jpg") #查找图像中所有面部的所有面部特征 face_landmarks_list = face_recognition.face_landmarks(image) print("I found {} face(s) in this photograph.".format(len(face_landmarks_list))) for face_landmarks in face_landmarks_list: #打印此图像中每个面部特征的位置 facial_features = [ 'chin', 'left_eyebrow', 'right_eyebrow', 'nose_bridge', 'nose_tip', 'left_eye', 'right_eye', 'top_lip', 'bottom_lip' ] for facial_feature in facial_features: print("The {} in this face has the following points: {}".format(facial_feature, face_landmarks[facial_feature])) #让我们在图像中描绘出每个人脸特征! pil_image = Image.fromarray(image) d = ImageDraw.Draw(pil_image) for facial_feature in facial_features: d.line(face_landmarks[facial_feature], width=5) pil_image.show()

自动识别出人脸特征

示例四(识别人脸鉴定是哪个人):

# filename : recognize_faces_in_pictures.py # -*- conding: utf-8 -*- # 导入face_recogntion模块,可用命令安装 pip install face_recognition import face_recognition #将jpg文件加载到numpy数组中 babe_image = face_recognition.load_image_file("/opt/face/known_people/babe.jpeg") Rong_zhu_er_image = face_recognition.load_image_file("/opt/face/known_people/Rong zhu er.jpg") unknown_image = face_recognition.load_image_file("/opt/face/unknown_pic/babe2.jpg") #获取每个图像文件中每个面部的面部编码 #由于每个图像中可能有多个面,所以返回一个编码列表。 #但是由于我知道每个图像只有一个脸,我只关心每个图像中的第一个编码,所以我取索引0。 babe_face_encoding = face_recognition.face_encodings(babe_image)[0] Rong_zhu_er_face_encoding = face_recognition.face_encodings(Rong_zhu_er_image)[0] unknown_face_encoding = face_recognition.face_encodings(unknown_image)[0] known_faces = [ babe_face_encoding, Rong_zhu_er_face_encoding ] #结果是True/false的数组,未知面孔known_faces阵列中的任何人相匹配的结果 results = face_recognition.compare_faces(known_faces, unknown_face_encoding) print("这个未知面孔是 Babe 吗? {}".format(results[0])) print("这个未知面孔是 容祖儿 吗? {}".format(results[1])) print("这个未知面孔是 我们从未见过的新面孔吗? {}".format(not True in results))

显示结果如图

示例五(识别人脸特征并美颜):

# filename : digital_makeup.py # -*- coding: utf-8 -*- # 导入pil模块 ,可用命令安装 apt-get install python-Imaging from PIL import Image, ImageDraw # 导入face_recogntion模块,可用命令安装 pip install face_recognition import face_recognition #将jpg文件加载到numpy数组中 image = face_recognition.load_image_file("biden.jpg") #查找图像中所有面部的所有面部特征 face_landmarks_list = face_recognition.face_landmarks(image) for face_landmarks in face_landmarks_list: pil_image = Image.fromarray(image) d = ImageDraw.Draw(pil_image, 'RGBA') #让眉毛变成了一场噩梦 d.polygon(face_landmarks['left_eyebrow'], fill=(68, 54, 39, 128)) d.polygon(face_landmarks['right_eyebrow'], fill=(68, 54, 39, 128)) d.line(face_landmarks['left_eyebrow'], fill=(68, 54, 39, 150), width=5) d.line(face_landmarks['right_eyebrow'], fill=(68, 54, 39, 150), width=5) #光泽的嘴唇 d.polygon(face_landmarks['top_lip'], fill=(150, 0, 0, 128)) d.polygon(face_landmarks['bottom_lip'], fill=(150, 0, 0, 128)) d.line(face_landmarks['top_lip'], fill=(150, 0, 0, 64), width=8) d.line(face_landmarks['bottom_lip'], fill=(150, 0, 0, 64), width=8) #闪耀眼睛 d.polygon(face_landmarks['left_eye'], fill=(255, 255, 255, 30)) d.polygon(face_landmarks['right_eye'], fill=(255, 255, 255, 30)) #涂一些眼线 d.line(face_landmarks['left_eye'] + [face_landmarks['left_eye'][0]], fill=(0, 0, 0, 110), width=6) d.line(face_landmarks['right_eye'] + [face_landmarks['right_eye'][0]], fill=(0, 0, 0, 110), width=6) pil_image.show()

美颜前后对比

来源:Kangvcar(简书)

原文发布于微信公众号 - PPV课数据科学社区(ppvke123)

原文发表时间:2017-11-14

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

【干货】快速上手图像识别:用TensorFlow API实现图像分类实例

【导读】1月17日,Arduino社区的编辑SAGAR SHARMA发布一篇基于TensorFlow API的图像识别实例教程。作者通过TensorFlow A...

8977
来自专栏Java进阶架构师

dubbo源码解析-详解LoadBalance

终于到了集群容错中的最后一个关键词,也就是LoadBalance(负载均衡),负载均衡必然会涉及一些算法.但是也不用太担心,算法这个词虽然高大上,但是算法也有简...

1643
来自专栏生信技能树

hpv病毒基因研究调研

2015年有一篇文献中提到了hpv的研究现状 As of May 30, 2015, 201 different HPV types had been comp...

3365
来自专栏有趣的Python和你

Numpy库(一)什么是numpynumpy存与取csv文件numpy随机数

1424
来自专栏人工智能LeadAI

毫秒级检测!你见过带GPU加速的树莓派吗?

86010
来自专栏CreateAMind

开源|MultiNet模型解决Kitti数据集自动驾驶中的道路分割、车辆检测和街道分类(附源代码)

MultiNet能够同时完成道路分割、汽车检测和道路分类的任务。MultiNet模型的实时存档速度和分割性能都处于最先进水平。详细的模型描述请查阅我们的论文。

2763
来自专栏书山有路勤为径

Tensorflow训练网络出现了loss = NAN解决方案

注:内容来源与网络 最近用Tensorflow训练网络,在增加层数和节点之后,出现loss = NAN的情况,在网上搜寻了很多答案,最终解决了问题,在这里汇总...

1721
来自专栏kangvcar

手把手教你用1行代码实现人脸识别 -- Python Face_recognition

1633
来自专栏小詹同学

人脸识别(三)——源码放送

人脸识别相关的基本原理和流程,以及各个步骤的介绍和代码前两篇都有介绍,其实可以通过前两篇自行整合出完整的人脸识别源码,并且适当修改可以实现MFC程...

5638
来自专栏ATYUN订阅号

TensorFlow:使用Cloud TPU在30分钟内训练出实时移动对象检测器

是否能够更快地训练和提供对象检测模型?我们已经听到了这种的反馈,在今天我们很高兴地宣布支持训练Cloud TPU上的对象检测模型,模型量化以及并添加了包括Ret...

3035

扫码关注云+社区

领取腾讯云代金券