《python算法教程》Day10 - 平面最近点对问题平面最小点对问题介绍代码演示

今天是《python算法教程》的第10篇读书笔记。笔记的主要内容是使用python实现求最小点对的时间复杂度为O(nlogn)的算法。

平面最小点对问题介绍

在几何学中,有一个基本问题:在一个平面的n个点中,求距离最近的两个点。 最直接的思路是遍历所有的点对,通过比较所有点对的距离找出距离最近的两点,即暴力算法。但是,这个思路的时间复杂度为O(n^2)。显然,这种算法的时间复杂度是不能接受的。 因此,是否可以考虑通过分治法的思路,将上述问题的解法的时间复杂度控制在O(nlog2n)?答案是可以的。具体的算法讲解可参考下述博文:

https://blog.csdn.net/lishuhuakai/article/details/9133961

但运用分治法求解上述问题时,需要注意一点,距离最小的两个点可能不在于同一个分组的点集中,而是分别来自于不同的点集中。

代码演示

暴力算法

#计算两点的距离
import math
def calDis(seq):
    dis=math.sqrt((seq[0][0]-seq[1][0])**2+(seq[0][1]-seq[1][1])**2)
    return dis

#暴力算法主体函数
def calDirect(seq):
    minDis=float('inf')
    pair=[]
    for i in range(len(seq)):
        for j in range(i+1,len(seq)):
            dis=calDis([seq[i],seq[j]])
            if dis <minDis:
                minDis=dis
                pair=[seq[i],seq[j]]
    return [pair,minDis]

分治法求解

#求出平面中距离最近的点对(若存在多对,仅需求出一对)
import random
import math

#计算两点的距离
def calDis(seq):
    dis=math.sqrt((seq[0][0]-seq[1][0])**2+(seq[0][1]-seq[1][1])**2)
    return dis

#生成器:生成横跨跨两个点集的候选点,由于点集是按纵坐标升序排序,right点集的点的纵坐标必定大于u的纵坐标,故只需检查纵坐标是否大于u[1]+dis,且只需最多检查right点集中纵坐标最小的6个点
def candidateDot(u,right,dis):
    cnt=0
    for v in right:
        cnt+=1
        if v[1]>u[1]+dis or cnt>3:
            break
        yield v

#求出横跨两个部分的点的最小距离
def combine(left,right,resMin):
    med_x=(left[-1][0]-right[0][0])/2
    dis=resMin[1]
    minDis=resMin[1]
    pair=resMin[0]
    for u in left:
        if u[0]<med_x-dis:
            continue
        for v in candidateDot(u,right,dis):
            dis=calDis([u,v])
            if dis<minDis:
                minDis=dis
                pair=[u,v]
    return [pair,minDis]


#分治求解
def divide(seq):
    #求序列元素数量
    n=len(seq)
    #按点的纵坐标升序排序
    seq=sorted(seq,key=lambda y:y[1])
    #递归开始进行
    if n<=1:
        return None,float('inf')
    elif n==2:
        return [seq,calDis(seq)]
    else:
        half=int(n/2)
        left=seq[:half]
        resLeft=divide(left)
        right=seq[half:]
        resRight=divide(right)
        #获取两集合中距离最短的点对
        if resLeft[1]<resRight[1]:
            resMin=combine(left,right,resLeft)
        else:
            resMin=combine(left,right,resRight)
        pair=resMin[0]
        minDis=resMin[1]
    return [pair,minDis]

    
seq=[(random.randint(0,100000),random.randint(0,1000000)) for x in range(100000)]
print(sorted(seq,key=lambda y:y[0]))
print("优化算法",divide(seq))

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏10km的专栏

faster rcnn:assert (boxes[:, 2] >= boxes[:, 0]).all()分析塈VOC2007 xml坐标定义理解

在进行faster rcnn训练的时候,报了一个断言错误 File “/py-faster-rcnn/tools/../lib/datasets/imdb.p...

49450
来自专栏编程

扣丁学堂浅谈Python视频教程之random模块详解

今天扣丁学堂小编给大家详细介绍一下关于Python视频教程之random模块详解,,首先用于生成伪随机数之所以称之为伪随机数,是因为真正意义上的随机数(或者随机...

238100
来自专栏数据结构与算法

27:单词翻转

27:单词翻转 总时间限制: 1000ms 内存限制: 65536kB描述 输入一个句子(一行),将句子中的每一个单词翻转后输出。 输入只有一行,为一个...

43570
来自专栏desperate633

LintCode 寻找缺失的数题目分析方法二 交换法

给出一个包含 0 .. N 中 N 个数的序列,找出0 .. N 中没有出现在序列中的那个数。

8430
来自专栏数据处理

TensorFlow入门1-minist

17930
来自专栏李智的专栏

Deep learning基于theano的keras学习笔记(1)-Sequential模型

《统计学习方法》中指出,机器学习的三个要素是模型,策略和优算法,这当然也适用于深度学习,而我个人觉得keras训练也是基于这三个要素的,先建立深度模型,然后选用...

10310
来自专栏数据结构与算法

拉格朗日插值

存在性和唯一性的证明以后再补。。。。 拉格朗日插值 拉格朗日插值,emmmm,名字挺高端的:joy: 它有什么应用呢? 我们在FFT中讲到过 设n-1次多项式为...

30270
来自专栏个人分享

旋转数组的最小数字

把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个非递减序列的一个旋转,输出旋转数组的最小元素。例如数组{3,4,5,1,2}为{1,2...

9540
来自专栏来自地球男人的部落格

浅谈Attention-based Model【源码篇】

源码不可能每一条都详尽解释,主要在一些关键步骤上加了一些注释和少许个人理解,如有不足之处,请予指正。 计划分为三个部分: 浅谈Attention-bas...

333100
来自专栏AI派

Numpy 修炼之道 (7)—— 形状操作

无论是ravel、reshape、T,它们都不会更改原有的数组形状,都是返回一个新的数组。

30130

扫码关注云+社区

领取腾讯云代金券