
Generator的正确打开方式
前两年大量的在写
Generator+co,用它来写一些类似同步的代码 但实际上,Generator并不是被造出来干这个使的,不然也就不会有后来的async、await了Generator是一个可以被暂停的函数,并且何时恢复,由调用方决定 希望本文可以帮助你理解Generator究竟是什么,以及怎么用
放一张图来表示我对Generator的理解:

一个咖啡机,虽说我并不喝咖啡,可惜找不到造王老吉的机器-.-
我所理解的Generator咖啡机大概就是这么的一个样子的:
gen.next()),机器开始磨咖啡豆、煮咖啡、接下来就得到咖啡了yield)拿Generator将上述咖啡机实现一下:
function * coffeeMachineGenerator (beans) {
do {
yield cookCoffee()
} while (--beans)
// 煮咖啡
function cookCoffee () {
console.log('cooking')
return 'Here you are'
}
}
// 往咖啡机放咖啡豆
let coffeeMachine = coffeeMachineGenerator(10)
// 我想喝咖啡了
coffeeMachine.next()
// 我在3秒后还会喝咖啡
setTimeout(() => {
coffeeMachine.next()
}, 3 * 1e3)代码运行后,我们首先会得到一条cooking的log,
然后在3s后会再次得到一条log。
这就解释了Generator是什么:
一个可以暂停的迭代器
调用next来获取数据(我们自己来决定是否何时煮咖啡)
在遇到yield以后函数的执行就会停止(接满了一杯,阀门关闭)
我们来决定何时运行剩余的代码next(什么时候想喝了再去煮)
这是Generator中最重要的特性,我们只有在真正需要的时候才获取下一个值,而不是一次性获取所有的值
声明Generator函数有很多种途径,最重要的一点就是,在function关键字后添加一个*
function * generator () {}
function* generator () {}
function *generator () {}
let generator = function * () {}
let generator = function* () {}
let generator = function *() {}
// 错误的示例
let generator = *() => {}
let generator = ()* => {}
let generator = (*) => {}或者,因为是一个函数,也可以作为一个对象的属性来存在:
class MyClass {
* generator() {}
*generator2() {}
}
const obj = {
*generator() {}
* generator() {}
}一个Generator函数通过调用两次方法,将会生成两个完全独立的状态机
所以,保存当前的Generator对象很重要:
function * generator (name = 'unknown') {
yield `Your name: ${name}`
}
const gen1 = generator()
const gen2 = generator('Niko Bellic')
gen1.next() // { value: Your name: unknown , done: false}
gen2.next() // { value: Your name: Niko Bellic, done: false}最常用的next()方法,无论何时调用它,都会得到下一次输出的返回对象(在代码执行完后的调用将会始终返回{value: undefined, done: true})。
next总会返回一个对象,包含两个属性值:
value:yield关键字后边表达式的值
done :如果已经没有yield关键字了,则会返回true .
function * generator () {
yield 5
return 6
}
const gen = generator()
console.log(gen.next()) // {value: 5, done: false}
console.log(gen.next()) // {value: 6, done: true}
console.log(gen.next()) // {value: undefined, done: true}
console.log(gen.next()) // {value: undefined, done: true} -- 后续再调用也都会是这个结果Generator函数是一个可迭代的,所以,我们可以直接通过for of来使用它。
function * generator () {
yield 1
yield 2
return 3
}
for (let item of generator()) {
item
}
// 1
// 2return不参与迭代
迭代会执行所有的yield,也就是说,在迭代后的Generator对象将不会再返回任何有效的值
我们可以在迭代器对象上直接调用return(),来终止后续的代码执行。
在return后的所有next()调用都将返回{value: undefined, done: true}
function * generator () {
yield 1
yield 2
yield 3
}
const gen = generator()
gen.return() // {value: undefined, done: true}
gen.return('hi') // {value: "hi", done: true}
gen.next() // {value: undefined, done: true}在调用throw()后同样会终止所有的yield执行,同时会抛出一个异常,需要通过try-catch来接收:
function * generator () {
yield 1
yield 2
yield 3
}
const gen = generator()
gen.throw('error text') // Error: error text
gen.next() // {value: undefined, done: true}yield的语法有点像return,但是,return是在函数调用结束后返回结果的
并且在调用return之后不会执行其他任何的操作
function method (a) {
let b = 5
return a + b
// 下边的两句代码永远不会执行
b = 6
return a * b
}
method(6) // 11
method(6) // 11function * yieldMethod(a) {
let b = 5
yield a + b
// 在执行第二次`next`时,下边两行则会执行
b = 6
return a * b
}
const gen = yieldMethod(6)
gen.next().value // 11
gen.next().value // 36yield*用来将一个Generator放到另一个Generator函数中执行。
有点像[...]的功能:
function * gen1 () {
yield 2
yield 3
}
function * gen2 () {
yield 1
yield * gen1()
yield 4
}
let gen = gen2()
gen.next().value // 1
gen.next().value // 2
gen.next().value // 3
gen.next().value // 4yield是可以接收返回值的,返回值可以在后续的代码被使用
一个诡异的写法
function * generator (num) {
return yield yield num
}
let gen = generator(1)
console.log(gen.next()) // {value: 1, done: false}
console.log(gen.next(2)) // {value: 2, done: false}
console.log(gen.next(3)) // {value: 3, done: true }我们在调用第一次next时候,代码执行到了yield num,此时返回num
然后我们再调用next(2),代码执行的是yield (yield num),而其中返回的值就是我们在next中传入的参数了,作为yield num的返回值存在。
以及最后的next(3),执行的是这部分代码return (yield (yield num)),第二次yield表达式的返回值。
上边的所有示例都是建立在已知次数的Generator函数上的,但如果你需要一个未知次数的Generator,仅需要创建一个无限循环就够了。
比如我们将实现一个随机数的获取:
function * randomGenerator (...randoms) {
let len = randoms.length
while (true) {
yield randoms[Math.floor(Math.random() * len)]
}
}
const randomeGen = randomGenerator(1, 2, 3, 4)
randomeGen.next().value // 返回一个随机数那个最著名的斐波那契数,基本上都会选择使用递归来实现
但是再结合着Generator以后,就可以使用一个无限循环来实现了:
function * fibonacci(seed1, seed2) {
while (true) {
yield (() => {
seed2 = seed2 + seed1;
seed1 = seed2 - seed1;
return seed2;
})();
}
}
const fib = fibonacci(0, 1);
fib.next(); // {value: 1, done: false}
fib.next(); // {value: 2, done: false}
fib.next(); // {value: 3, done: false}
fib.next(); // {value: 5, done: false}
fib.next(); // {value: 8, done: false}再次重申,我个人不认为async/await是Generator的语法糖。。
如果是写前端的童鞋,基本上都会遇到处理分页加载数据的时候
如果结合着Generator+async、await,我们可以这样实现:
async function * loadDataGenerator (url) {
let page = 1
while (true) {
page = (yield await ajax(url, {
data: page
})) || ++page
}
}
// 使用setTimeout模拟异步请求
function ajax (url, { data: page }) {
return new Promise((resolve) => {
setTimeout(_ => {
console.log(`get page: ${page}`);
resolve()
}, 1000)
})
}
let loadData = loadDataGenerator('get-data-url')
await loadData.next()
await loadData.next()
// force load page 1
await loadData.next(1)
await loadData.next()
// get page: 1
// get page: 2
// get page: 1
// get page: 2这样我们可以在简单的几行代码中实现一个分页控制函数了。
如果想要从加载特定的页码,直接将page传入next即可。
Generator还有更多的使用方式,(实现异步流程控制、按需进行数据读取)
个人认为,Generator的优势在于代码的惰性执行,Generator所实现的事情,我们不使用它也可以做到,只是使用Generator后,能够让代码的可读性变得更好、流程变得更清晰、更专注于逻辑的实现。
如果有什么不懂的地方 or 文章中一些的错误,欢迎指出